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1 Preliminaries on random matrix and random vector

The root of high-dimensional statistics is dating back to work on random matrix theory and
high-dimensional testing problems (Negahban et al. [2012]). To develop theoretical results
on linear regression and M-estimator in the diverging dimension case, we need to introduce
some important spectral norm concentration inequalities of random matrix. It’s worthy to
mention that the "High-dimensional” in this article means that

p=n® «a€c(0,1).

1.1 Concentration inequalities on random matrix norm

For simple normal case, here we states Lemma 9 without proof in Wainwright [2009]:

Lemma 1.1 For k < n, let X € R™* have i.i.d rows X; ~ N(0,A) and §(n, k,t) :=

2(\/§+t)+(\/§+t)2

1. If the covariance matriz A has maximum eigenvalue Ch,q, < 00, then for allt > 0, we

have
?|

2. If the covariance matrix A has minimum eigenvalue Ch; > 0, then for all t > 0, we

have ,
T _
P[(X X) — A
n

Next we will generalize the concentration inequality to sub-gaussian case. Recall the operator
norm or spectral norm of m x n matrix A is defined by

A
|All2 := max | Az}l = max |[|Azx||s,
eeR\{0} ||z|la  zeSn?

1
“XTX - A
mn

> Chaxd(n, l{:,t)} < 2exp (—nt?/2). (1.1)

2

> d(n, k,t)

min

] < 2exp (—nt?/2). (1.2)

2

which is the largest singular value of A. For symmetric matrix, the spectral norm is the
largest eigenvalue.
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Lemma 1.2 The covering numbers of the unit Euclidean sphere S™™' satisfy the following
for any € > 0,

N (5" 1e) < (g + 1) :
Lemma 1.3 Let A be an m X n matriz and 6 > 0. Suppose that
HATA — I"H < max ((5, (52) ,

then
(L =9)||z]ls < [[Az|l2 < (1 +0)||x||2  for all z € R™.

Proof: W.L.O.G, let ||z||; = 1.Using the assumption we have
max (6,6%) > [((ATA - I,) z,2)| = ||| Az[3 — 1|
Applying the elementary inequality,
max (Jz —1],]z = 1) <[22 = 1], 2>0

for z = ||Az||o, we concluded that ||Az|s — 1] < 6. u
Then we introduce the two-sided bounds on the entire spectrum of m x n matrix A (see
Vershynin [2018], page 97).

Theorem 1.4 (Two-sided spectral norm bounds) Let A be an m x n matriz whose
rows A; are independent, mean zero, sub-gaussian isotropic random vectors in R™. Then for
any t > 0 we have

Vm —CK*(Vn+1t) <sp(A) < s1(A) < vVm+ CK?*(y/n +1t) (1.3)
with probability at least 1 — 2exp (—t?). Here K = max; [|Ay],,,-

Proof: Using Lemma 1.3, it suffices to show

t
< K? 2 h = UE — .
< max(é,d) where ¢ C( m+\/ﬁ)

By Lemma 1.2, we can find an 1—net A of the unit sphere 5"~! with cardinality |A/| < 9™
Then we can evaluate operator norm on the N,

<(iATA — In> x, x>’ = 2max
N m zeN

HiATA —1,
m

< 2max
fAS

HiATA — 1,
m

1
— || a3 - 1‘. (1.4)

Let X; = 27 A; which is indpendent sub-gaussian random variables, note that

1 2 o 1 - T 2 _ ]' < 2
EHAtz—l—E;[(»’U A;) —1]—52(& - 1),



Using the fact that A; are isotropic and ||z]l2 = 1, || Xill¢, < K. Then X? — 1 is sub-
exponential random variables satisfying that [|[X? — 1||;, < CK. By Bernstein inequality

and we obtain
Pl jazz—1|> Sl 2 p 1ix2 1>
PR x — —_ — PR I —_
m 2 -2 m <= ¢ -2

A
< 2exp |—c; min e m
= 2exp [—0152m]
[—a1C? (n+t7)],

< 2exp

where the second equality follows that 55 = max (J, 6?) and the last inequality follows that
(a+b)? > (a* 4+ b*). Using (1.4) we have

1 1
P (H—ATA — I,|| > K*max (6, 52)) <P (Zmax —[|Az|)3 — 1| > K* max (9, 52)>
m zeN |m
<2-9%exp [—0102 (n + t2)] .
Choose sufficiently large C' and the result follows. [ ]

After proving this conclusion, we can apply this to covariance matrix estimation.

Theorem 1.5 Let X be a p—dimensional multivariate sub-gaussian random variables with
covariance matriz Y3 and mean 0, and there exists K > 1 such that

(X, 2) ||y, < K2"Sax for any x € RP. (1.5)

Then for sample covariance matriz 3, we have

[p+t2  p+t°
Hzn - E” S C’)\max(z)[(2 < L n + p 0 ) (16)

holds with probability at least 1 — exp(—t2/2).

Proof: Let Z; = ¥'/2X;, then Z; are independent isotropic sub-gaussian random vector.
Using (1.5) we have
1Zillo. = sup [[{Zi, 2}y, < K. (1.7)

reSP—

Then note that,
1% =Sl =[BRS < (1R 11

where

1 n
R,:=~Y ZZ' —1,
n ; 7 p
Let A be the n X p matrix with rows Z;, then apply Theorem 1.4 we obtain that

12, — 2 < K2|S] max (5,5?)
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holds with at least probability 1 — 2 exp(—t%/2). Moreover,

2 2
n1ax(5,52) §5+52§C<\/p—;t +p—;t )

Thus the proof is completed. [ ]
Remark. The theorem above implies that for low dimensional setting, i.e., p <n

I, - 210, (y/2). (1.9

1= == = (15 = 20,

then if \,,;,(2) > 0 we have
I s =0, (\/g) . (1.9

1.2 Concentration inequalities on random vextor norm

Using the fact that

We start with the definitions of subGaussian random vectors and norm-subGaussian random
vectors.
Definition 1.6 A random vector X € R? is subGaussian, if there exists o € R so that

2_2
[Ivilt*o

REelVXEX) < o5~ vy e R% (1.10)

Definition 1.7 A random vector X € R? is norm-subGaussian (nSG(c)), if there exists
o € R so that

+2

P(|X — EX| >t) < 22, VteR. (1.11)

Norm-subGaussian random vectors is proposed by Jin et al. [2019], which includes both
subGaussian (with a smaller ¢ parameter) and bounded norm random vectors as special
cases.

Lemma 1.8 There exists absolute constant c so that following random vectors are all nSG(c-
0)

1. A bounded random vector X € R? so that || X|| < o.
2. A random vector X € R where X = e, and random variable ¢ € R is o—subGaussian.
3. A random vector X € R? that is (o /v/d)—subGaussian.

Theorem 1.9 (Jin et al. [2019]) There exists an absolute constant ¢ such that if X4, ..., X, €
R? are independent zero-mean nSG(a) random vectors. Then for any § > 0, with probability
at least 1 — 0

(1.12)




From Theorem 1.9, we can obtain that

1 < log d

n Z Xi|| = Op ( > ) :
n ‘= n

And in section 2, we will prove that the random vectors X; with sub-gaussian coordinates
assumption has the following convergence rate

1 & 1
“YX, :0p< dogd).
nizl n

In section 3, we assume that the random vectors X; with bounded expectation of norm, i.e.,

E (]| X;]|3) < M, which leads
1

Now consider the following linear regression model with random ensembles:

1 n

2 Linear regression

yi=X18 +e, i=12..n (2.1)

where ¢;,7 = 1,2,...,n are independent sub-gaussion random variables with mean 0 and
parameter o and 3* € RP. We have known that the LSE of 3" is

N 1 n . -1 1 n

Theorem 2.1 (Consistence) For linear regression model (2.1), suppose that X; are inde-
pendent sub-gaussion random vectors with same mean 0 and covariance matriz ¥ and X;
are independent with e;. Assume that A\pin(X) = Ao > 0 and ||.X;||y, < K, then

=0, ( pk;”) . (2.3)

|6-8

Proof: By (2.1),

|B-p

-1
l & 1 &
= (E;Xixf> (E;X@) (2.4)
2
~ [1
1 n

< |E == + 1=

2

i)

i=1
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All we need to do is bounding the term H (% Yo Xiei)
a’+b?
2

0 let Z;; = Xije;. Using the basic

and s%e® < e, for n > 0 we have
E (Zl-zjenlziﬂ) <E (7772 exp(277\Zij|))
<n’E [exp (277Xi2j) exp (2776?)]
< 772\/1[*3 [exp (20X5) ] E [exp (2ne?)].
Then by the property of sub-gaussian random variable, there exists some M > 0, such that
E [exp (QT]X%)] < ME [exp (2776?)] < M.
Next use the exponential inequality in Cai et al. [2011], we set B2 = nMn~2

r |1 — [log p P -

p n
= ZP (Z | Zi;| > C’BnM_lm/logp>
j=1

=1

inequality |ab| <

= p_fy'

And if we choose sufficiently large C', we can obtain that

1 — log p
Nz, =0 .
1y -0, y/72)

The proof is completed by (2.4) and Theorem 1.5. n
The theorem above implies that if plogp = o(n), LSE is consistent. Next we will give
the central limt theorem for LSE.

Theorem 2.2 (Asymptotic Normality) Under the condition of Theorem 2.1, and as-
sume that covariates X and noise e are independent. We have

Jn (B _ B*) L N (0,0257Y) (2.5)

p
max
J

Proof: Note that,

n -1 n

Vi (B-8) = (% ; X,-XZ-T> (% ; Xiei) . (2.6)

By law of large numbers, .
% z; X X'y
And using the independence, we have ;E (Xe;) =0 and
E(X;e;) (Xe)" = 0?3,
Thus by multivariate central limt theorem,
% é X,e; ~5 N (0,0%%)

Then the result follows from Slutsky’s Lemma. [ ]
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3 M estimator

Given sample {X;,i = 1,2,...,n} € A, is drawn independently according to some distribution
P. And in the well-specified case the distribution P is a member of parameterized family
{Py,0 € Q} , where Q is the parameter space, then the goal is to estimate parameter 8*. For
mis-specified models, in which case the target parameter 8 is defined as the minimizer of
the population lost function (see Wainwright [2019]).

A function £, : © x X, used to measure the goodness of estimation using sample X,,,
which is called lost function. The population lost function is defined as

L£(O)=E(L,(6,X.,)), (3.1)

where

1 n
L,(0,X,)=— L(6,X;).
6.%,) = 310X
Next we define the target parameter as the minimum of the population lost function

0" = arg min L£(6). (3.2)

For example, the negative log-likelihood function is a lost function. Our overall estimator is
based on solving the optimization problem

§ € arg min {£, (6 Z7) + A2 (0)} (3.3)

where A, > 0 is regularization parameter and ®() : @ — R is the penalty function. The
estimator (3.3) is called M estimator, where the “M” stands for minimization (or maxi-
mization). We begin with no-penalty problem, and the following assumptions is needed to
estabilish theory results, and these assumptions can be found in Zhang et al. [2013] and
Jordan et al. [2019].

Assumption 3.1 (Parameter space) The parameter space © is a compact and convex
subset of RP. Moreover, 6* € int(©) and R := supyg ||0 — 0*||, > 0.

Assumption 3.2 (Local convexity) The lost function L(X;,0) is twice differentiable with
respective to @, and the Hessian matriz 1(0) = V?L(0) of the population lost function
L(0) is invertible at 8*. Moreover, there exists two positive constants p_ < py such that
p-la 2 1(0) = pydy.

Assumption 3.3 (Smoothness) There exists some positive constant (G, L) and positive
integers (ko, k1), such that

E[IVLO, X)) < G*, E[IV*LO,X) - VLO)[§] < LM (3.4

Moreover, for all 61,05 € U(0, p) (a ball around the truth @ with radius p > 0) there exists
some positive constant M and some positive integer ky such that

[V2£(61, X) — V2£(85, X)], < M(X)]6, — 3] (35
and E[M (X)*] < M*=.



Before bound the /5 error between the optimization solution 0 and ture parameter 8%, we
state the following Lemma.

Lemma 3.4 For conver function f(x), z* is the global minimizer of f(x). If for any
re{r:|r—2*=a}, st, f(x) > f(Z), then
|lz* — 2| < a.
Proof: If there exists 2’ such that |z' — #|? > a and f(2') < f(2*). By the convexity of f,
we have
flar + (1 —a)Z) < af(x) + (1 - ) f(F) < f(2),
where 0 < o < 1. Note that
laz’ + (1 — )i — 2| = alz’ — 7,

let a = |2 — #|/|z* — &, then |az’ + (1 — a)& — Z| = a. But

flaz' + (1= a)7) < f(2),

which is a contradiction. [ ]
Next we state Lemma 7 in Zhang et al. [2013] without proof as following:

Lemma 3.5 Under Assumption 3.3, there exist some constants Cy and Cy (dependent only
on the moments ko and ki respectively) such that

NI Gko
E VL (07)]5] < G (36)

it log**/2(2p) L1

E [HV% (6, X) — V2L (6")

Theorem 3.6 Under Assumption 3.2 and Assumption 3.3,

6-61=0, (). 38)

Proof: According to Lemma 3.4, it suffices to show that for any @ satisfying ||@ — 0|2 =

0 <\/Lﬁ> such that

L,(0)>L,(0%).
Taking Taylor expansion for £, (8) at 6™,

L,(0)=L,(0)+VL, (0 (6 -6+ % (6 —6"'VL,(0)(0—-6"), (3.9

where 0 is some point between @ and 6*. Define the following three events:

&o = {%iM(Xi)SQM},

£ = {||v2£n (6, X) — V2L (6")

7.
<)

&= {Ive. 1< ).



Using Assumption 3.2, Assumption 3.3 and Markov inequality

Cs  Cylog™/?(2p)
nk2/2 nk1/2

P(EUE) <
Since ||@ — 0%|]2 = O (\%), there exists some positive constant C' such that

C
9 0|l = — 1=

Under event & N &, we can bound V2£,(8) by
Amin (VQﬁn(é)> > Ain (1(6%)) = [IV2L(67) = 1(8)[|> — [ V?L(8) — V2L, (67)]2
> — 216 - 67

2MC/)u__
VRSN

Using (3.6) and Jessen inequlity, we have

= (1-

E(|V£.(67)]2] = E [(IVL.(67)15)"™] < (B [IV£a(67)15])"™
G
<

T

Then event & happens with high probability, which follows from O,(Y;,) = O(Y). Therefore
under event & N & N & we have

2MC"

0)— L, (07) > 0 (00 +(1—- )0 -0
L,(0) - L,(67) = VL, (07) ( )+ ( \/ﬁ) | I3
. . 2MC" .
> —|[VL, (67)]]2]|0 — 672 + (1 - 7)_% 0|3
o C’,u Co (1_2MC/)M__(C'M_)2
NG \/_ vn ' 2 dn
If we choose sufficiently large C', £, (0) — £, (") > 0 holds with high probability. [ |

Remark. Note that, if we substitute moment condition for gradient in (3.4) by
E[IVL(0, X)ll3'] < p™/G",

we can obtain the new convergence rate

-6 =0, (ﬁ)

The following asymptotic result can help us conduct statistical inference, such as interval
estimation and hypothesis testing.



Theorem 3.7 Under Assumption 3.2 and Assumption 3.3,
NG <5 . 0*) N (0, i) , (3.10)

where
Y =1(60")""E[VLO", X)TVLO", X)] 1(6)".

~

Proof: First we perform Taylor expansion for V., (8) around 6",
0= VL,(0) = VL, (0°) + V2L, (6) (6 - 9*) +u0,(]|0 — 6°|12),
where u € R? is the unit vector. Then taking simple linear algebra we obtain
) * 2 *\—1 * C 2 %\ —1
0—6"=-V-L,(0°)"VL,(0 )+EV L, (0°) .

Using law of large numbers, multivariate central limt theorem and Slutsky’s lemma, we have
1 & AR C
NG (5 - 9*) = <— > ovrLer, XZ»)> <— > VLo, Xi)> + —V2L,(0") tu
e VS v
N (0, i) .

Remark. The following plug-in estimator is a consistent estimator for i,

1

(% i V2L(8, Xi)> _ (% i VL6, X;)L(®, Xi)T> (% i V2L(0, Xz-)) _ (3.11)

More generally, by Assumption 3.3 we set p € (0,1), then choosing the potentially smaller
radius 0, = min{p, pu—/4L}. We can define the following good events

&o 3_{%iM(Xi)§2M}7

£ = {Hv%n (0, X) — V2L (6")

=
<)

& = {92, (67 | < L2020

The following lemma is Lemma 6 in Zhang et al. [2013].

Lemma 3.8 Under the events &, & and &, we have

2[[VE (07)1],

0, — 0%, <
H 1 H2— (1_’0)”7

,and  VZF(0) = (1= p)pu_Lpxyp. (3.12)
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We can assume that || — 0%||, < R, then make decomposition as

[je-el] syl e

2 [1(5) IVL, (9*)||2}

N

60— 0"

A

60— 0"

)

c k

T +P(EYR
2E[IVE 0] -
(1= p)XF I

Using Assumption 3.2, Assumption 3.3 and Lemma 3.4, we can prove

logkl/2(2d>Hk’1 Gko

+
nk1/2 U pko/2’

. 1
P (&) §02W+Cl

for some universal constants Cy, Cy, Cy. Therefore for any k € N with k& < min {ko, k1, k2}
we have

Gk
E [H@l — 9*||§:| = O (n‘kﬂ . m + n_k"/Q + n_kl/Q + n_k2/2) = O (n_k/Q) . (313)

We can also obtain the {5 error bound [|6 — 6%, = O, (\%) form (3.13). There are two

very useful concentration inequlities for random vector and random matrix, which is used to
prove Lemma 3.5 (Lemma 7 in Zhang et al. [2013]).

Lemma 3.9 (De Acosta et al. [1981]) Let k > 2 and X; be a sequence of independent
random vectors in a separable Banach space with norm || - | and E [||X1||k’1 < 00. There

exists a finite constant Cy such that

k n k2,
] <G, (ZE[HXAF}) +YE[IXI]| . G

Lemma 3.10 (Chen et al. [2012]) Let X; € R%*? be independent and symmetrically dis-
tributed Hermitian matrices. Then

k] Vk 1/2 "
V2elogd (ZE ) +2610gd(E [maxHXin]) . (3.15)

4 Newton Raphson algorithm

For optimization probelm (3.3), there are no analytic solutions usually. And Newton Raph-
son algorithm use iteration method to approximate solution 0,

Ot = et_l - T]Vzﬁn(et_l)_lv;cn(et_l), (4].)
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where n € (0, 1) is step size. According to optimal condition we have

0, —0=0,_,—60—nVL,(0,_1) ' VL,(0:_1)
—0,,-0— nv? W(0i1)" (vc (6,1 —vcn@))
— 0,1 — 0 — V2L, (0, 1) V2L, (0) (ot_l —5)
- <1p V2L (0,1) " V2L, (0 )) <0t_1 —5) :

where 8 is some point between 6;_; and . Then we obtain

] 0, - 6” < 0,07V, 0| [lo_. —d| .
2 2 2
if we assume that for some positive constant ¢ so that
c<A (van(et,l)flv%n(é)) <t (4.2)

then there exists some p, € (0,1)

which achives exponential convergence rate. Obviously, the error of Newton update can be
bounded by

~

o) t
6, — 0,1—-6| <---<pl

<
2_pn 2

18 — 6711, = O (pyan) + O, (VLA(6)),

where a,, is the initial estimation error bound ||@y — 6%||,. Condition (4.2) is quite rigorous,
and the general Newton update convergence analysis can be found in Boyd and Vandenberghe
[2004]. Next we give the convergence rate of Newton method in Bubeck [2014], which requires
bound of initial error.

Lemma 4.1 (Theorem 5.3, Bubeck [2014]) Assume that f has a Lipschitz Hessian, i.e.,
IV2f(x) — V2f(y)|| < M||x—yl||. Let z* be local minimum of f with strictly positive Hessian,
that is, V2f (x*) = ul,, u > 0. Suppose that the initial starting point xo of Newton’s method

1s such that
1

2M°

Then Newton’s method is well-defined and converges to x* at a quadratic rate:

[0 — ™[] < 57

* M *
k1 = 2| < — llag — 27" (4.3)
1
Proof: First note that,

Vf(zy) — Vf(x /V2 (" + s(z — x%))(x — x¥)ds.

12



Then using V f(z*) = 0, we have
Ty — 2" = — a7 = VA f(ay) TV f ()

=5, — 2" — V2 f(x) ! /o V2f(a* + s(ap — %)) (v — 2%)ds
= V2 f(xp) " (sz(:zk)(:vk — ") — /0 V2f(x* + s(zp — %)) (2 — x*)ds)

By Lipschitz Hessian, we have

M

i = ol < V2, 5 i — oI

then using strong convexity assumption of f in z* and ||z — 2*|| < &7,

VA (@) = VAf (2%) = M [l — 27| T = (= M [l — 27[)) L =

By
2

Then the result follows. [
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