Linear Regression and M-estimator for Diverging p

Yajie Bao*

March 16, 2020

1 Preliminaries on random matrix and random vector

The root of high-dimensional statistics is dating back to work on random matrix theory and high-dimensional testing problems (Negahban et al. [2012]). To develop theoretical results on linear regression and M-estimator in the diverging dimension case, we need to introduce some important spectral norm concentration inequalities of random matrix. It's worthy to mention that the "High-dimensional" in this article means that

$$
p=n^{\alpha}, \quad \alpha \in(0,1) .
$$

1.1 Concentration inequalities on random matrix norm

For simple normal case, here we states Lemma 9 without proof in Wainwright [2009]:
Lemma 1.1 For $k \leq n$, let $X \in \mathbb{R}^{n \times k}$ have i.i.d rows $X_{i} \sim N(0, \Lambda)$ and $\delta(n, k, t):=$ $2\left(\sqrt{\frac{k}{n}}+t\right)+\left(\sqrt{\frac{k}{n}}+t\right)^{2}$

1. If the covariance matrix Λ has maximum eigenvalue $C_{\max }<\infty$, then for all $t>0$, we have

$$
\begin{equation*}
\mathbb{P}\left[\left\|\frac{1}{n} X^{T} X-\Lambda\right\|_{2} \geq C_{\max } \delta(n, k, t)\right] \leq 2 \exp \left(-n t^{2} / 2\right) \tag{1.1}
\end{equation*}
$$

2. If the covariance matrix Λ has minimum eigenvalue $C_{\min }>0$, then for all $t>0$, we have

$$
\begin{equation*}
\mathbb{P}\left[\left\|\left(\frac{X^{T} X}{n}\right)^{-1}-\Lambda^{-1}\right\|_{2} \geq \frac{\delta(n, k, t)}{C_{\min }}\right] \leq 2 \exp \left(-n t^{2} / 2\right) \tag{1.2}
\end{equation*}
$$

Next we will generalize the concentration inequality to sub-gaussian case. Recall the operator norm or spectral norm of $m \times n$ matrix A is defined by

$$
\|A\|_{2}:=\max _{x \in \mathbb{R}^{n} \backslash\{0\}} \frac{\|A x\|_{2}}{\|x\|_{2}}=\max _{x \in S^{n-1}}\|A x\|_{2},
$$

which is the largest singular value of A. For symmetric matrix, the spectral norm is the largest eigenvalue.

[^0]Lemma 1.2 The covering numbers of the unit Euclidean sphere S^{n-1} satisfy the following for any $\varepsilon>0$,

$$
\mathcal{N}\left(S^{n-1}, \varepsilon\right) \leq\left(\frac{2}{\varepsilon}+1\right)^{n}
$$

Lemma 1.3 Let A be an $m \times n$ matrix and $\delta>0$. Suppose that

$$
\left\|A^{\top} A-I_{n}\right\| \leq \max \left(\delta, \delta^{2}\right),
$$

then

$$
(1-\delta)\|x\|_{2} \leq\|A x\|_{2} \leq(1+\delta)\|x\|_{2} \quad \text { for all } x \in \mathbb{R}^{n}
$$

Proof: W.L.O.G, let $\|x\|_{2}=1$.Using the assumption we have

$$
\max \left(\delta, \delta^{2}\right) \geq\left|\left\langle\left(A^{\top} A-I_{n}\right) x, x\right\rangle\right|=\left|\|A x\|_{2}^{2}-1\right|
$$

Applying the elementary inequality,

$$
\max \left(|z-1|,|z-1|^{2}\right) \leq\left|z^{2}-1\right|, \quad z \geq 0
$$

for $z=\|A x\|_{2}$, we concluded that $\|A x\|_{2}-1 \mid \leq \delta$.
Then we introduce the two-sided bounds on the entire spectrum of $m \times n$ matrix A (see Vershynin [2018], page 97).

Theorem 1.4 (Two-sided spectral norm bounds) Let A be an $m \times n$ matrix whose rows A_{i} are independent, mean zero, sub-gaussian isotropic random vectors in \mathbb{R}^{n}. Then for any $t>0$ we have

$$
\begin{equation*}
\sqrt{m}-C K^{2}(\sqrt{n}+t) \leq s_{n}(A) \leq s_{1}(A) \leq \sqrt{m}+C K^{2}(\sqrt{n}+t) \tag{1.3}
\end{equation*}
$$

with probability at least $1-2 \exp \left(-t^{2}\right)$. Here $K=\max _{i}\left\|A_{i}\right\|_{\psi_{2}}$.
Proof: Using Lemma 1.3, it suffices to show

$$
\left\|\frac{1}{m} A^{\top} A-I_{n}\right\| \leq K^{2} \max \left(\delta, \delta^{2}\right) \quad \text { where } \quad \delta=C\left(\sqrt{\frac{n}{m}}+\frac{t}{\sqrt{m}}\right)
$$

By Lemma 1.2, we can find an $\frac{1}{4}-$ net \mathcal{N} of the unit sphere S^{n-1} with cardinality $|\mathcal{N}| \leq 9^{n}$. Then we can evaluate operator norm on the \mathcal{N},

$$
\begin{equation*}
\left\|\frac{1}{m} A^{\top} A-I_{n}\right\| \leq 2 \max _{x \in \mathcal{N}}\left|\left\langle\left(\frac{1}{m} A^{T} A-I_{n}\right) x, x\right\rangle\right|=2 \max _{x \in \mathcal{N}}\left|\frac{1}{m}\|A x\|_{2}^{2}-1\right| . \tag{1.4}
\end{equation*}
$$

Let $X_{i}=x^{T} A_{i}$ which is indpendent sub-gaussian random variables, note that

$$
\frac{1}{m}\|A x\|_{2}^{2}-1=\frac{1}{m} \sum_{i=1}^{m}\left[\left(x^{T} A_{i}\right)^{2}-1\right]=\frac{1}{m} \sum_{i=1}^{m}\left(X_{i}^{2}-1\right),
$$

Using the fact that A_{i} are isotropic and $\|x\|_{2}=1,\left\|X_{i}\right\|_{\phi_{2}} \leq K$. Then $X_{i}^{2}-1$ is subexponential random variables satisfying that $\left\|X_{i}^{2}-1\right\|_{\phi_{1}} \leq C K$. By Bernstein inequality and we obtain

$$
\begin{aligned}
\mathbb{P}\left\{\left|\frac{1}{m}\|A x\|_{2}^{2}-1\right| \geq \frac{\varepsilon}{2}\right\} & =\mathbb{P}\left\{\left|\frac{1}{m} \sum_{i=1}^{m} X_{i}^{2}-1\right| \geq \frac{\varepsilon}{2}\right\} \\
& \leq 2 \exp \left[-c_{1} \min \left(\frac{\varepsilon^{2}}{K^{4}}, \frac{\varepsilon}{K^{2}}\right) m\right] \\
& =2 \exp \left[-c_{1} \delta^{2} m\right] \\
& \leq 2 \exp \left[-c_{1} C^{2}\left(n+t^{2}\right)\right]
\end{aligned}
$$

where the second equality follows that $\frac{\varepsilon}{K^{2}}=\max \left(\delta, \delta^{2}\right)$ and the last inequality follows that $(a+b)^{2} \geq\left(a^{2}+b^{2}\right)$. Using (1.4) we have

$$
\begin{aligned}
\mathbb{P}\left(\left\|\frac{1}{m} A^{\top} A-I_{n}\right\| \geq K^{2} \max \left(\delta, \delta^{2}\right)\right) & \leq \mathbb{P}\left(2 \max _{x \in \mathcal{N}}\left|\frac{1}{m}\|A x\|_{2}^{2}-1\right|>K^{2} \max \left(\delta, \delta^{2}\right)\right) \\
& \leq 2 \cdot 9^{n} \exp \left[-c_{1} C^{2}\left(n+t^{2}\right)\right] .
\end{aligned}
$$

Choose sufficiently large C and the result follows.
After proving this conclusion, we can apply this to covariance matrix estimation.
Theorem 1.5 Let X be a p-dimensional multivariate sub-gaussian random variables with covariance matrix Σ and mean $\mathbf{0}$, and there exists $K \geq 1$ such that

$$
\begin{equation*}
\|\langle X, x\rangle\|_{\psi_{2}} \leq K x^{T} \Sigma x \text { for any } x \in \mathbb{R}^{p} . \tag{1.5}
\end{equation*}
$$

Then for sample covariance matrix $\widehat{\Sigma}_{n}$ we have

$$
\begin{equation*}
\left\|\Sigma_{n}-\Sigma\right\| \leq C \lambda_{\max }(\Sigma) K^{2}\left(\sqrt{\frac{p+t^{2}}{n}}+\frac{p+t^{2}}{n}\right) \tag{1.6}
\end{equation*}
$$

holds with probability at least $1-\exp \left(-t^{2} / 2\right)$.
Proof: Let $Z_{i}=\Sigma^{-1 / 2} X_{i}$, then Z_{i} are independent isotropic sub-gaussian random vector. Using (1.5) we have

$$
\begin{equation*}
\left\|Z_{i}\right\|_{\phi_{2}}=\sup _{x \in S^{p-1}}\left\|\left\langle Z_{i}, x\right\rangle\right\|_{\psi_{2}} \leq K \tag{1.7}
\end{equation*}
$$

Then note that,

$$
\left\|\Sigma_{n}-\Sigma\right\|=\left\|\Sigma^{1 / 2} R_{n} \Sigma^{1 / 2}\right\| \leq\left\|R_{n}\right\|\|\Sigma\|
$$

where

$$
R_{n}:=\frac{1}{n} \sum_{i=1}^{n} Z_{i} Z_{i}^{\top}-I_{p}
$$

Let A be the $n \times p$ matrix with rows Z_{i}, then apply Theorem 1.4 we obtain that

$$
\left\|\Sigma_{n}-\Sigma\right\| \leq K^{2}\|\Sigma\| \max \left(\delta, \delta^{2}\right)
$$

holds with at least probability $1-2 \exp \left(-t^{2} / 2\right)$. Moreover,

$$
\max \left(\delta, \delta^{2}\right) \leq \delta+\delta^{2} \leq C\left(\sqrt{\frac{p+t^{2}}{n}}+\frac{p+t^{2}}{n}\right)
$$

Thus the proof is completed.
Remark. The theorem above implies that for low dimensional setting, i.e., $p<n$

$$
\begin{equation*}
\left\|\Sigma_{n}-\Sigma\right\|=O_{p}\left(\sqrt{\frac{p}{n}}\right) \tag{1.8}
\end{equation*}
$$

Using the fact that

$$
\left\|\Sigma_{n}^{-1}-\Sigma^{-1}\right\|=\Omega_{p}\left(\left\|\Sigma_{n}-\Sigma\right\|\right)
$$

then if $\lambda_{\min }(\Sigma)>0$ we have

$$
\begin{equation*}
\left\|\Sigma_{n}^{-1}-\Sigma^{-1}\right\|=O_{p}\left(\sqrt{\frac{p}{n}}\right) \tag{1.9}
\end{equation*}
$$

1.2 Concentration inequalities on random vextor norm

We start with the definitions of subGaussian random vectors and norm-subGaussian random vectors.

Definition 1.6 A random vector $\boldsymbol{X} \in \mathbb{R}^{d}$ is subGaussian, if there exists $\sigma \in \mathbb{R}$ so that

$$
\begin{equation*}
\mathbb{E} e^{\langle\mathbf{v}, \mathbf{X}-\mathbb{E} \mathbf{X}\rangle} \leq e^{\frac{\|\mathbf{v}\| \|^{2} \sigma^{2}}{2}}, \quad \forall \mathbf{v} \in \mathbb{R}^{d} \tag{1.10}
\end{equation*}
$$

Definition 1.7 A random vector $\boldsymbol{X} \in \mathbb{R}^{d}$ is norm-subGaussian $(\mathrm{nSG}(\sigma))$, if there exists $\sigma \in \mathbb{R}$ so that

$$
\begin{equation*}
\mathbb{P}(\|\mathbf{X}-\mathbb{E} \mathbf{X}\| \geq t) \leq 2 e^{-\frac{t^{2}}{2 \sigma^{2}}}, \quad \forall t \in \mathbb{R} \tag{1.11}
\end{equation*}
$$

Norm-subGaussian random vectors is proposed by Jin et al. [2019], which includes both subGaussian (with a smaller σ parameter) and bounded norm random vectors as special cases.

Lemma 1.8 There exists absolute constant c so that following random vectors are all $\mathrm{nSG}(c$. σ)

1. A bounded random vector $\mathbf{X} \in \mathbb{R}^{d}$ so that $\|\mathbf{X}\| \leq \sigma$.
2. A random vector $\mathbf{X} \in \mathbb{R}^{d}$ where $\mathbf{X}=\xi \mathbf{e}_{1}$ and random variable $\xi \in \mathbb{R}$ is $\sigma-$ subGaussian.
3. A random vector $\mathbf{X} \in \mathbb{R}^{d}$ that is (σ / \sqrt{d})-subGaussian.

Theorem 1.9 (Jin et al. [2019]) There exists an absolute constantc such that if $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n} \in$ \mathbb{R}^{d} are independent zero-mean $\mathrm{nSG}(\sigma)$ random vectors. Then for any $\delta>0$, with probability at least $1-\delta$

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} \mathbf{X}_{i}\right\| \leq c \cdot \sqrt{\sum_{i=1}^{n} \sigma_{i}^{2} \log \frac{2 d}{\delta}} \tag{1.12}
\end{equation*}
$$

From Theorem 1.9, we can obtain that

$$
\left\|\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}\right\|=O_{p}\left(\sqrt{\frac{\log d}{n}}\right) .
$$

And in section 2, we will prove that the random vectors \boldsymbol{X}_{i} with sub-gaussian coordinates assumption has the following convergence rate

$$
\left\|\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}\right\|=O_{p}\left(\sqrt{\frac{d \log d}{n}}\right) .
$$

In section 3, we assume that the random vectors \boldsymbol{X}_{i} with bounded expectation of norm, i.e., $\mathbb{E}\left(\left\|X_{i}\right\|_{2}^{2}\right) \leq M$, which leads

$$
\left\|\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}\right\|=O_{p}\left(\sqrt{\frac{1}{n}}\right) .
$$

2 Linear regression

Now consider the following linear regression model with random ensembles:

$$
\begin{equation*}
y_{i}=\boldsymbol{X}_{i}^{T} \boldsymbol{\beta}^{*}+e_{i}, \quad i=1,2, \ldots, n \tag{2.1}
\end{equation*}
$$

where $e_{i}, i=1,2, \ldots, n$ are independent sub-gaussion random variables with mean 0 and parameter σ and $\boldsymbol{\beta}^{*} \in \mathbb{R}^{p}$. We have known that the LSE of $\boldsymbol{\beta}^{*}$ is

$$
\begin{equation*}
\widehat{\boldsymbol{\beta}}=\left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{T}\right)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} y_{i} \boldsymbol{X}_{i}\right) . \tag{2.2}
\end{equation*}
$$

Theorem 2.1 (Consistence) For linear regression model (2.1), suppose that X_{i} are independent sub-gaussion random vectors with same mean $\mathbf{0}$ and covariance matrix Σ and X_{i} are independent with e_{i}. Assume that $\lambda_{\min }(\Sigma)=\lambda_{0}>0$ and $\left\|X_{i}\right\|_{\psi_{2}} \leq K$, then

$$
\begin{equation*}
\left\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right\|_{2}=O_{p}\left(\sqrt{\frac{p \log p}{n}}\right) . \tag{2.3}
\end{equation*}
$$

Proof: By (2.1),

$$
\begin{align*}
\left\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right\|_{2} & =\left\|\left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{T}\right)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} e_{i}\right)\right\|_{2} \tag{2.4}\\
& =\left\|\widehat{\Sigma}_{n}^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} e_{i}\right)\right\|_{2} \\
& \leq\left\|\widehat{\Sigma}_{n}^{-1}-\Sigma^{-1}\right\|_{2}\left\|\left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} e_{i}\right)\right\|_{2}+\left\|\Sigma^{-1}\right\|_{2}\left\|\left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} e_{i}\right)\right\|_{2} .
\end{align*}
$$

All we need to do is bounding the term $\left\|\left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} e_{i}\right)\right\|_{2}$, let $Z_{i j}=X_{i j} e_{i}$. Using the basic inequality $|a b| \leq \frac{a^{2}+b^{2}}{2}$ and $s^{2} e^{s} \leq e^{2 s}$, for $\eta>0$ we have

$$
\begin{aligned}
\mathbb{E}\left(Z_{i j}^{2} e^{\eta\left|Z_{i j}\right|}\right) & \leq \mathbb{E}\left(\eta^{-2} \exp \left(2 \eta\left|Z_{i j}\right|\right)\right) \\
& \leq \eta^{2} \mathbb{E}\left[\exp \left(2 \eta X_{i j}^{2}\right) \exp \left(2 \eta e_{i}^{2}\right)\right] \\
& \leq \eta^{2} \sqrt{\mathbb{E}\left[\exp \left(2 \eta X_{i j}^{2}\right)\right] \mathbb{E}\left[\exp \left(2 \eta e_{i}^{2}\right)\right]}
\end{aligned}
$$

Then by the property of sub-gaussian random variable, there exists some $M>0$, such that

$$
\mathbb{E}\left[\exp \left(2 \eta X_{i j}^{2}\right)\right] \leq M, \mathbb{E}\left[\exp \left(2 \eta e_{i}^{2}\right)\right] \leq M
$$

Next use the exponential inequality in Cai et al. [2011], we set $\bar{B}_{n}^{2}=n M \eta^{-2}$

$$
\begin{aligned}
\mathbb{P}\left(\max _{j}^{p}\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i j}\right|>C \sqrt{\frac{\log p}{n}}\right) & \leq \sum_{j=1}^{p} \mathrm{P}\left(\left|\sum_{i=1}^{n} Z_{i j}\right|>C \sqrt{n \log p}\right) \\
& =\sum_{j=1}^{p} \mathrm{P}\left(\sum_{i=1}^{n}\left|Z_{i j}\right|>C \bar{B}_{n} M^{-1} \eta \sqrt{\log p}\right) \\
& =p^{-\gamma}
\end{aligned}
$$

And if we choose sufficiently large C, we can obtain that

$$
\max _{j}^{p}\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i j}\right|=O_{p}\left(\sqrt{\frac{\log p}{n}}\right) .
$$

The proof is completed by (2.4) and Theorem 1.5.
The theorem above implies that if $p \log p=o(n)$, LSE is consistent. Next we will give the central limt theorem for LSE.

Theorem 2.2 (Asymptotic Normality) Under the condition of Theorem 2.1, and assume that covariates \boldsymbol{X} and noise e are independent. We have

$$
\begin{equation*}
\sqrt{n}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right) \xrightarrow{d} \mathcal{N}\left(0, \sigma^{2} \Sigma^{-1}\right) \tag{2.5}
\end{equation*}
$$

Proof: Note that,

$$
\begin{equation*}
\sqrt{n}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)=\left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{T}\right)^{-1}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \boldsymbol{X}_{i} e_{i}\right) . \tag{2.6}
\end{equation*}
$$

By law of large numbers,

$$
\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{T} \xrightarrow{p} \Sigma .
$$

And using the independence, we have $\mathbb{E}\left(\boldsymbol{X}_{i} e_{i}\right)=0$ and

$$
\mathbb{E}\left(\boldsymbol{X}_{i} e_{i}\right)\left(\boldsymbol{X}_{i} e_{i}\right)^{T}=\sigma^{2} \Sigma .
$$

Thus by multivariate central limt theorem,

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \boldsymbol{X}_{i} e_{i} \xrightarrow{d} \mathcal{N}\left(0, \sigma^{2} \Sigma\right)
$$

Then the result follows from Slutsky's Lemma.

3 M estimator

Given sample $\left\{X_{i}, i=1,2, \ldots, n\right\} \in \mathcal{X}_{n}$ is drawn independently according to some distribution \mathbb{P}. And in the well-specified case the distribution \mathcal{P} is a member of parameterized family $\left\{\mathbb{P}_{\theta}, \theta \in \Omega\right\}$, where $\boldsymbol{\Omega}$ is the parameter space, then the goal is to estimate parameter $\boldsymbol{\theta}^{*}$. For mis-specified models, in which case the target parameter $\boldsymbol{\theta}^{*}$ is defined as the minimizer of the population lost function (see Wainwright [2019]).

A function $\mathcal{L}_{n}: \Omega \times \mathcal{X}_{n}$ used to measure the goodness of estimation using sample \boldsymbol{X}_{n}, which is called lost function. The population lost function is defined as

$$
\begin{equation*}
\mathcal{L}(\boldsymbol{\theta})=\mathbb{E}\left(\mathcal{L}_{n}\left(\boldsymbol{\theta}, \boldsymbol{X}_{n}\right)\right), \tag{3.1}
\end{equation*}
$$

where

$$
\mathcal{L}_{n}\left(\boldsymbol{\theta}, \boldsymbol{X}_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} L\left(\boldsymbol{\theta}, X_{i}\right) .
$$

Next we define the target parameter as the minimum of the population lost function

$$
\begin{equation*}
\boldsymbol{\theta}^{*}=\arg \min _{\boldsymbol{\theta} \in \boldsymbol{\Omega}} \mathcal{L}(\boldsymbol{\theta}) \tag{3.2}
\end{equation*}
$$

For example, the negative log-likelihood function is a lost function. Our overall estimator is based on solving the optimization problem

$$
\begin{equation*}
\widehat{\theta} \in \arg \min _{\theta \in \Omega}\left\{\mathcal{L}_{n}\left(\theta ; Z_{1}^{n}\right)+\lambda_{n} \Phi(\theta)\right\}, \tag{3.3}
\end{equation*}
$$

where $\lambda_{n}>0$ is regularization parameter and $\Phi(\theta): \Omega \rightarrow \mathbb{R}$ is the penalty function. The estimator (3.3) is called \mathbf{M} estimator, where the " M " stands for minimization (or maximization). We begin with no-penalty problem, and the following assumptions is needed to estabilish theory results, and these assumptions can be found in Zhang et al. [2013] and Jordan et al. [2019].

Assumption 3.1 (Parameter space) The parameter space Θ is a compact and convex subset of \mathbb{R}^{p}. Moreover, $\theta^{*} \in \operatorname{int}(\Theta)$ and $R:=\sup _{\theta \in \Theta}\left\|\theta-\theta^{*}\right\|_{2}>0$.

Assumption 3.2 (Local convexity) The lost function $L\left(X_{i}, \boldsymbol{\theta}\right)$ is twice differentiable with respective to $\boldsymbol{\theta}$, and the Hessian matrix $I(\boldsymbol{\theta})=\nabla^{2} \mathcal{L}(\boldsymbol{\theta})$ of the population lost function $\mathcal{L}(\boldsymbol{\theta})$ is invertible at $\boldsymbol{\theta}^{*}$. Moreover, there exists two positive constants $\mu_{-}<\mu_{+}$such that $\mu_{-} I_{d} \preceq I(\boldsymbol{\theta}) \preceq \mu_{+} I_{d}$.

Assumption 3.3 (Smoothness) There exists some positive constant (G, L) and positive integers $\left(k_{0}, k_{1}\right)$, such that

$$
\begin{equation*}
\mathbb{E}\left[\|\nabla L(\boldsymbol{\theta}, X)\|_{2}^{k_{0}}\right] \leq G^{k_{0}}, \quad \mathbb{E}\left[\left\|\nabla^{2} L(\boldsymbol{\theta}, X)-\nabla^{2} \mathcal{L}(\boldsymbol{\theta})\right\|_{2}^{k_{1}}\right] \leq L^{k_{1}} \tag{3.4}
\end{equation*}
$$

Moreover, for all $\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2} \in U\left(\boldsymbol{\theta}^{*}, \rho\right)$ (a ball around the truth $\boldsymbol{\theta}^{*}$ with radius $\rho>0$) there exists some positive constant M and some positive integer k_{2} such that

$$
\begin{equation*}
\left\|\nabla^{2} \mathcal{L}\left(\boldsymbol{\theta}_{1}, X\right)-\nabla^{2} \mathcal{L}\left(\boldsymbol{\theta}_{2}, X\right)\right\|_{2} \leq M(X)\left\|\boldsymbol{\theta}_{1}-\boldsymbol{\theta}_{2}\right\|_{2}, \tag{3.5}
\end{equation*}
$$

and $\mathbb{E}\left[M(X)^{k_{2}}\right] \leq M^{k_{2}}$.

Before bound the ℓ_{2} error between the optimization solution $\widehat{\boldsymbol{\theta}}$ and ture parameter $\boldsymbol{\theta}^{*}$, we state the following Lemma.
Lemma 3.4 For convex function $f(x), x^{*}$ is the global minimizer of $f(x)$. If for any $x \in\left\{x:|x-\tilde{x}|^{2}=a\right\}$, s.t., $f(x) \geq f(\tilde{x})$, then

$$
\left|x^{*}-\tilde{x}\right| \leq a .
$$

Proof: If there exists x^{\prime} such that $\left|x^{\prime}-\tilde{x}\right|^{2}>a$ and $f\left(x^{\prime}\right) \leq f\left(x^{*}\right)$. By the convexity of f, we have

$$
f\left(\alpha x^{\prime}+(1-\alpha) \tilde{x}\right) \leq \alpha f\left(x^{\prime}\right)+(1-\alpha) f(\tilde{x})<f(\tilde{x})
$$

where $0<\alpha<1$. Note that

$$
\left|\alpha x^{\prime}+(1-\alpha) \tilde{x}-\tilde{x}\right|=\alpha\left|x^{\prime}-\tilde{x}\right|
$$

let $\alpha=\left|x^{\prime}-\tilde{x}\right| /\left|x^{*}-\tilde{x}\right|$, then $\left|\alpha x^{\prime}+(1-\alpha) \tilde{x}-\tilde{x}\right|=a$. But

$$
f\left(\alpha x^{\prime}+(1-\alpha) \tilde{x}\right)<f(\tilde{x}),
$$

which is a contradiction.
Next we state Lemma 7 in Zhang et al. [2013] without proof as following:
Lemma 3.5 Under Assumption 3.3, there exist some constants C_{1} and C_{2} (dependent only on the moments k_{0} and k_{1} respectively) such that

$$
\begin{align*}
\mathbb{E}\left[\left\|\nabla \mathcal{L}_{n}\left(\boldsymbol{\theta}^{*}\right)\right\|_{2}^{k_{0}}\right] & \leq C_{1} \frac{G^{k_{0}}}{n^{k_{0} / 2}}, \tag{3.6}\\
\mathbb{E}\left[\left\|\nabla^{2} \mathcal{L}_{n}\left(\boldsymbol{\theta}^{*}, X\right)-\nabla^{2} \mathcal{L}\left(\boldsymbol{\theta}^{*}\right)\right\|_{2}^{k_{1}}\right] & \leq C_{2} \frac{\log ^{k_{1} / 2}(2 p) L^{k_{1}}}{n^{k_{1} / 2}} \tag{3.7}
\end{align*}
$$

Theorem 3.6 Under Assumption 3.2 and Assumption 3.3,

$$
\begin{equation*}
\left\|\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\|=O_{p}\left(\frac{1}{\sqrt{n}}\right) . \tag{3.8}
\end{equation*}
$$

Proof: According to Lemma 3.4, it suffices to show that for any $\boldsymbol{\theta}$ satisfying $\left\|\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right\|_{2}=$ $O\left(\frac{1}{\sqrt{n}}\right)$ such that

$$
\mathcal{L}_{n}(\boldsymbol{\theta}) \geq \mathcal{L}_{n}\left(\boldsymbol{\theta}^{*}\right)
$$

Taking Taylor expansion for $\mathcal{L}_{n}(\boldsymbol{\theta})$ at $\boldsymbol{\theta}^{*}$,

$$
\begin{equation*}
\mathcal{L}_{n}(\boldsymbol{\theta})=\mathcal{L}_{n}\left(\boldsymbol{\theta}^{*}\right)+\nabla \mathcal{L}_{n}\left(\boldsymbol{\theta}^{*}\right)^{T}\left(\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right)+\frac{1}{2}\left(\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right)^{T} \nabla^{2} \mathcal{L}_{n}(\tilde{\boldsymbol{\theta}})\left(\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right), \tag{3.9}
\end{equation*}
$$

where $\tilde{\boldsymbol{\theta}}$ is some point between $\boldsymbol{\theta}$ and $\boldsymbol{\theta}^{*}$. Define the following three events:

$$
\begin{aligned}
& \mathcal{E}_{0}:=\left\{\frac{1}{n} \sum_{i=1}^{n} M\left(X_{i}\right) \leq 2 M\right\}, \\
& \mathcal{E}_{1}:=\left\{\left\|\nabla^{2} \mathcal{L}_{n}\left(\boldsymbol{\theta}^{*}, X\right)-\nabla^{2} \mathcal{L}\left(\boldsymbol{\theta}^{*}\right)\right\|_{2} \leq \frac{\mu_{-}}{2}\right\}, \\
& \mathcal{E}_{2}:=\left\{\left\|\nabla \mathcal{L}_{n}\left(\boldsymbol{\theta}^{*}\right)\right\|_{2} \leq \frac{C_{0}}{\sqrt{n}}\right\} .
\end{aligned}
$$

Using Assumption 3.2, Assumption 3.3 and Markov inequality

$$
\mathrm{P}\left(\mathcal{E}_{0}^{c} \cup \mathcal{E}_{1}^{c}\right) \leq \frac{C_{3}}{n^{k_{2} / 2}}+\frac{C_{4} \log ^{k_{1} / 2}(2 p)}{n^{k_{1} / 2}}
$$

Since $\left\|\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right\|_{2}=O\left(\frac{1}{\sqrt{n}}\right)$, there exists some positive constant C such that

$$
\left\|\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right\|_{2}=\frac{C^{\prime} \mu_{-}}{2 \sqrt{n}}
$$

Under event $\mathcal{E}_{0} \cap \mathcal{E}_{1}$, we can bound $\nabla^{2} \mathcal{L}_{n}(\tilde{\boldsymbol{\theta}})$ by

$$
\begin{aligned}
\lambda_{\min }\left(\nabla^{2} \mathcal{L}_{n}(\tilde{\boldsymbol{\theta}})\right) & \geq \lambda_{\min }\left(I\left(\boldsymbol{\theta}^{*}\right)\right)-\left\|\nabla^{2} \mathcal{L}_{n}\left(\boldsymbol{\theta}^{*}\right)-I\left(\boldsymbol{\theta}^{*}\right)\right\|_{2}-\left\|\nabla^{2} \mathcal{L}_{n}(\tilde{\boldsymbol{\theta}})-\nabla^{2} \mathcal{L}_{n}\left(\boldsymbol{\theta}^{*}\right)\right\|_{2} \\
& \geq \mu_{-}-\frac{\mu_{-}}{2}-2 M\left\|\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right\|_{2} \\
& =\left(1-\frac{2 M C^{\prime}}{\sqrt{n}}\right) \frac{\mu_{-}}{2}
\end{aligned}
$$

Using (3.6) and Jessen inequlity, we have

$$
\begin{aligned}
\mathbb{E}\left[\left\|\nabla \mathcal{L}_{n}\left(\boldsymbol{\theta}^{*}\right)\right\|_{2}\right] & =\mathbb{E}\left[\left(\left\|\nabla \mathcal{L}_{n}\left(\boldsymbol{\theta}^{*}\right)\right\|_{2}^{k_{0}}\right)^{1 / k_{0}}\right] \leq\left(\mathbb{E}\left[\left\|\nabla \mathcal{L}_{n}\left(\boldsymbol{\theta}^{*}\right)\right\|_{2}^{k_{0}}\right]\right)^{1 / k_{0}} \\
& \leq \frac{C_{1} G}{\sqrt{n}}
\end{aligned}
$$

Then event \mathcal{E}_{2} happens with high probability, which follows from $O_{p}\left(Y_{n}\right)=O\left(\mathbb{Y}_{\ltimes}\right)$. Therefore under event $\mathcal{E}_{0} \cap \mathcal{E}_{1} \cap \mathcal{E}_{2}$ we have

$$
\begin{aligned}
\mathcal{L}_{n}(\boldsymbol{\theta})-\mathcal{L}_{n}\left(\boldsymbol{\theta}^{*}\right) & \geq \nabla \mathcal{L}_{n}\left(\boldsymbol{\theta}^{*}\right)^{T}\left(\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right)+\left(1-\frac{2 M C^{\prime}}{\sqrt{n}}\right) \frac{\mu_{-}}{2}\left\|\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right\|_{2}^{2} \\
& \geq-\left\|\nabla \mathcal{L}_{n}\left(\boldsymbol{\theta}^{*}\right)\right\|_{2}\left\|\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right\|_{2}+\left(1-\frac{2 M C^{\prime}}{\sqrt{n}}\right) \frac{\mu_{-}}{2}\left\|\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right\|_{2}^{2} \\
& \geq-\frac{C^{\prime} \mu_{-}}{2 \sqrt{n}} \frac{C_{0}}{\sqrt{n}}+\left(1-\frac{2 M C^{\prime}}{\sqrt{n}}\right) \frac{\mu_{-}}{2} \frac{\left(C^{\prime} \mu_{-}\right)^{2}}{4 n}
\end{aligned}
$$

If we choose sufficiently large $C^{\prime}, \mathcal{L}_{n}(\boldsymbol{\theta})-\mathcal{L}_{n}\left(\boldsymbol{\theta}^{*}\right) \geq 0$ holds with high probability. Remark. Note that, if we substitute moment condition for gradient in (3.4) by

$$
\mathbb{E}\left[\|\nabla L(\boldsymbol{\theta}, X)\|_{2}^{k_{0}}\right] \leq p^{k_{0} / 2} G^{k_{0}}
$$

we can obtain the new convergence rate

$$
\left\|\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\|=O_{p}\left(\sqrt{\frac{p}{n}}\right)
$$

The following asymptotic result can help us conduct statistical inference, such as interval estimation and hypothesis testing.

Theorem 3.7 Under Assumption 3.2 and Assumption 3.3,

$$
\begin{equation*}
\sqrt{n}\left(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right) \xrightarrow{d} \mathcal{N}(0, \widetilde{\Sigma}), \tag{3.10}
\end{equation*}
$$

where

$$
\widetilde{\Sigma}=I\left(\boldsymbol{\theta}^{*}\right)^{-1} \mathbb{E}\left[\nabla L\left(\boldsymbol{\theta}^{*}, X\right)^{T} \nabla L\left(\boldsymbol{\theta}^{*}, X\right)\right] I\left(\boldsymbol{\theta}^{*}\right)^{-1}
$$

Proof: First we perform Taylor expansion for $\nabla \mathcal{L}_{n}(\widehat{\boldsymbol{\theta}})$ around $\boldsymbol{\theta}^{*}$,

$$
0=\nabla \mathcal{L}_{n}(\widehat{\boldsymbol{\theta}})=\nabla \mathcal{L}_{n}\left(\boldsymbol{\theta}^{*}\right)+\nabla^{2} \mathcal{L}_{n}\left(\boldsymbol{\theta}^{*}\right)\left(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right)+u O_{p}\left(\left\|\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\|_{2}^{2}\right)
$$

where $u \in \mathbb{R}^{p}$ is the unit vector. Then taking simple linear algebra we obtain

$$
\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}=-\nabla^{2} \mathcal{L}_{n}\left(\boldsymbol{\theta}^{*}\right)^{-1} \nabla \mathcal{L}_{n}\left(\boldsymbol{\theta}^{*}\right)+\frac{C}{n} \nabla^{2} \mathcal{L}_{n}\left(\boldsymbol{\theta}^{*}\right)^{-1} u
$$

Using law of large numbers, multivariate central limt theorem and Slutsky's lemma, we have

$$
\begin{aligned}
\sqrt{n}\left(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right) & =\left(\frac{1}{n} \sum_{i=1}^{n} \nabla^{2} L\left(\boldsymbol{\theta}^{*}, X_{i}\right)\right)^{-1}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \nabla L\left(\boldsymbol{\theta}^{*}, X_{i}\right)\right)+\frac{C}{\sqrt{n}} \nabla^{2} \mathcal{L}_{n}\left(\boldsymbol{\theta}^{*}\right)^{-1} u \\
& \xrightarrow{d} \mathcal{N}(0, \widetilde{\Sigma})
\end{aligned}
$$

Remark. The following plug-in estimator is a consistent estimator for $\widetilde{\Sigma}$,

$$
\begin{equation*}
\left(\frac{1}{n} \sum_{i=1}^{n} \nabla^{2} L\left(\widehat{\boldsymbol{\theta}}, X_{i}\right)\right)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \nabla L\left(\widehat{\boldsymbol{\theta}}, X_{i}\right) L\left(\widehat{\boldsymbol{\theta}}, X_{i}\right)^{T}\right)\left(\frac{1}{n} \sum_{i=1}^{n} \nabla^{2} L\left(\widehat{\boldsymbol{\theta}}, X_{i}\right)\right)^{-1} \tag{3.11}
\end{equation*}
$$

More generally, by Assumption 3.3 we set $\rho \in(0,1)$, then choosing the potentially smaller radius $\delta_{\rho}=\min \left\{\rho, \rho \mu_{-} / 4 L\right\}$. We can define the following good events

$$
\begin{aligned}
& \mathcal{E}_{0}:=\left\{\frac{1}{n} \sum_{i=1}^{n} M\left(X_{i}\right) \leq 2 M\right\}, \\
& \mathcal{E}_{1}:=\left\{\left\|\nabla^{2} \mathcal{L}_{n}\left(\boldsymbol{\theta}^{*}, X\right)-\nabla^{2} \mathcal{L}\left(\boldsymbol{\theta}^{*}\right)\right\|_{2} \leq \frac{\rho \mu_{-}}{2}\right\}, \\
& \mathcal{E}_{2}:=\left\{\left\|\nabla \mathcal{L}_{n}\left(\boldsymbol{\theta}^{*}\right)\right\|_{2} \leq \frac{(1-\rho) \mu_{-} \delta_{\rho}}{2}\right\} .
\end{aligned}
$$

The following lemma is Lemma 6 in Zhang et al. [2013].
Lemma 3.8 Under the events $\mathcal{E}_{0}, \mathcal{E}_{1}$ and \mathcal{E}_{2}, we have

$$
\begin{equation*}
\left\|\theta_{1}-\theta^{*}\right\|_{2} \leq \frac{2\left\|\nabla F_{1}\left(\theta^{*}\right)\right\|_{2}}{(1-\rho) \mu_{-}}, \quad \text { and } \quad \nabla^{2} F_{1}(\theta) \succeq(1-\rho) \mu_{-} I_{p \times p} \tag{3.12}
\end{equation*}
$$

We can assume that $\left\|\hat{\theta}-\theta^{*}\right\|_{2} \leq R$, then make decomposition as

$$
\begin{aligned}
\mathbb{E}\left[\left\|\hat{\theta}-\theta^{*}\right\|_{2}^{k}\right] & =\mathbb{E}\left[1_{(\mathcal{E})}\left\|\hat{\theta}-\theta^{*}\right\|_{2}^{k}\right]+\mathbb{E}\left[1_{\left(\mathcal{E}^{c}\right)}\left\|\hat{\theta}-\theta^{*}\right\|_{2}^{k}\right] \\
& \leq \frac{2^{k} \mathbb{E}\left[1_{(\mathcal{E})}\left\|\nabla \mathcal{L}_{n}\left(\theta^{*}\right)\right\|_{2}^{k}\right]}{(1-\rho)^{k} \lambda^{k}}+\mathbb{P}\left(\mathcal{E}^{c}\right) R^{k} \\
& \leq \frac{2^{k} \mathbb{E}\left[\left\|\nabla \mathcal{L}_{n}\left(\theta^{*}\right)\right\|_{2}^{k}\right]}{(1-\rho)^{k} \lambda^{k}}+\mathbb{P}\left(\mathcal{E}^{c}\right) R^{k}
\end{aligned}
$$

Using Assumption 3.2, Assumption 3.3 and Lemma 3.4, we can prove

$$
\mathbb{P}\left(\mathcal{E}^{c}\right) \leq C_{2} \frac{1}{n^{k_{2} / 2}}+C_{1} \frac{\log ^{k_{1} / 2}(2 d) H^{k_{1}}}{n^{k_{1} / 2}}+C_{0} \frac{G^{k_{0}}}{n^{k_{0} / 2}},
$$

for some universal constants C_{0}, C_{1}, C_{2}. Therefore for any $k \in \mathbb{N}$ with $k \leq \min \left\{k_{0}, k_{1}, k_{2}\right\}$ we have

$$
\begin{equation*}
\mathbb{E}\left[\left\|\theta_{1}-\theta^{*}\right\|_{2}^{k}\right]=\mathcal{O}\left(n^{-k / 2} \cdot \frac{G^{k}}{(1-\rho)^{k} \lambda^{k}}+n^{-k_{0} / 2}+n^{-k_{1} / 2}+n^{-k_{2} / 2}\right)=\mathcal{O}\left(n^{-k / 2}\right) . \tag{3.13}
\end{equation*}
$$

We can also obtain the ℓ_{2} error bound $\left\|\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\|_{2}=O_{p}\left(\frac{1}{\sqrt{n}}\right)$ form (3.13). There are two very useful concentration inequlities for random vector and random matrix, which is used to prove Lemma 3.5 (Lemma 7 in Zhang et al. [2013]).

Lemma 3.9 (De Acosta et al. [1981]) Let $k \geq 2$ and X_{i} be a sequence of independent random vectors in a separable Banach space with norm $\|\cdot\|$ and $\mathbb{E}\left[\left\|X_{i}\right\|^{k}\right]<\infty$. There exists a finite constant C_{k} such that

$$
\begin{equation*}
\mathbb{E}\left[\left\|\left\|\sum_{i=1}^{n} X_{i}\right\|-\mathbb{E}\left[\left\|\sum_{i=1}^{n} X_{i}\right\| \|\left.\right|^{k}\right] \leq C_{k}\left[\left(\sum_{i=1}^{n} \mathbb{E}\left[\left\|X_{i}\right\|^{2}\right]\right)^{k / 2}+\sum_{i=1}^{n} \mathbb{E}\left[\left\|X_{i}\right\|^{k}\right]\right]\right.\right. \tag{3.14}
\end{equation*}
$$

Lemma 3.10 (Chen et al. [2012]) Let $X_{i} \in \mathbb{R}^{d \times d}$ be independent and symmetrically distributed Hermitian matrices. Then

$$
\begin{equation*}
\mathbb{E}\left[\left\|\sum_{i=1}^{n} X_{i}\right\|^{k}\right]^{1 / k} \leq \sqrt{2 e \log d}\left\|\left(\sum_{i=1}^{n} \mathbb{E}\left[X_{i}^{2}\right]\right)^{1 / 2}\right\|+2 e \log d\left(\mathbb{E}\left[\max _{i}\left\|X_{i}\right\|^{k}\right]\right)^{1 / k} \tag{3.15}
\end{equation*}
$$

4 Newton Raphson algorithm

For optimization probelm (3.3), there are no analytic solutions usually. And Newton Raphson algorithm use iteration method to approximate solution $\widehat{\boldsymbol{\theta}}$,

$$
\begin{equation*}
\boldsymbol{\theta}_{t}=\boldsymbol{\theta}_{t-1}-\eta \nabla^{2} \mathcal{L}_{n}\left(\boldsymbol{\theta}_{t-1}\right)^{-1} \nabla \mathcal{L}_{n}\left(\boldsymbol{\theta}_{t-1}\right) \tag{4.1}
\end{equation*}
$$

where $\eta \in(0,1)$ is step size. According to optimal condition we have

$$
\begin{aligned}
\boldsymbol{\theta}_{t}-\widehat{\boldsymbol{\theta}} & =\boldsymbol{\theta}_{t-1}-\widehat{\boldsymbol{\theta}}-\eta \nabla^{2} \mathcal{L}_{n}\left(\boldsymbol{\theta}_{t-1}\right)^{-1} \nabla \mathcal{L}_{n}\left(\boldsymbol{\theta}_{t-1}\right) \\
& =\boldsymbol{\theta}_{t-1}-\widehat{\boldsymbol{\theta}}-\eta \nabla^{2} \mathcal{L}_{n}\left(\boldsymbol{\theta}_{t-1}\right)^{-1}\left(\nabla \mathcal{L}_{n}\left(\boldsymbol{\theta}_{t-1}\right)-\nabla \mathcal{L}_{n}(\widehat{\boldsymbol{\theta}})\right) \\
& =\boldsymbol{\theta}_{t-1}-\widehat{\boldsymbol{\theta}}-\eta \nabla^{2} \mathcal{L}_{n}\left(\boldsymbol{\theta}_{t-1}\right)^{-1} \nabla^{2} \mathcal{L}_{n}(\widetilde{\boldsymbol{\theta}})\left(\boldsymbol{\theta}_{t-1}-\widehat{\boldsymbol{\theta}}\right) \\
& =\left(I_{p}-\eta \nabla^{2} \mathcal{L}_{n}\left(\boldsymbol{\theta}_{t-1}\right)^{-1} \nabla^{2} \mathcal{L}_{n}(\widetilde{\boldsymbol{\theta}})\right)\left(\boldsymbol{\theta}_{t-1}-\widehat{\boldsymbol{\theta}}\right),
\end{aligned}
$$

where $\widetilde{\boldsymbol{\theta}}$ is some point between $\boldsymbol{\theta}_{t-1}$ and $\widehat{\boldsymbol{\theta}}$. Then we obtain

$$
\left\|\boldsymbol{\theta}_{t}-\widehat{\boldsymbol{\theta}}\right\|_{2} \leq\left\|I_{p}-\eta \nabla^{2} \mathcal{L}_{n}\left(\boldsymbol{\theta}_{t-1}\right)^{-1} \nabla^{2} \mathcal{L}_{n}(\widetilde{\boldsymbol{\theta}})\right\|_{2}\left\|\boldsymbol{\theta}_{t-1}-\widehat{\boldsymbol{\theta}}\right\|_{2},
$$

if we assume that for some positive constant c so that

$$
\begin{equation*}
c \leq \lambda\left(\nabla^{2} \mathcal{L}_{n}\left(\boldsymbol{\theta}_{t-1}\right)^{-1} \nabla^{2} \mathcal{L}_{n}(\widetilde{\boldsymbol{\theta}})\right) \leq c^{-1} \tag{4.2}
\end{equation*}
$$

then there exists some $\rho_{\eta} \in(0,1)$

$$
\left\|\boldsymbol{\theta}_{t}-\widehat{\boldsymbol{\theta}}\right\|_{2} \leq \rho_{\eta}\left\|\boldsymbol{\theta}_{t-1}-\widehat{\boldsymbol{\theta}}\right\|_{2} \leq \cdots \leq \rho_{\eta}^{t}\left\|\boldsymbol{\theta}_{0}-\widehat{\boldsymbol{\theta}}\right\|_{2},
$$

which achives exponential convergence rate. Obviously, the error of Newton update can be bounded by

$$
\left\|\boldsymbol{\theta}_{t}-\boldsymbol{\theta}^{*}\right\|_{2}=O\left(\rho_{\eta}^{t} a_{n}\right)+O_{p}\left(\nabla \mathcal{L}_{n}\left(\boldsymbol{\theta}^{*}\right)\right),
$$

where a_{n} is the initial estimation error bound $\left\|\boldsymbol{\theta}_{0}-\boldsymbol{\theta}^{*}\right\|_{2}$. Condition (4.2) is quite rigorous, and the general Newton update convergence analysis can be found in Boyd and Vandenberghe [2004]. Next we give the convergence rate of Newton method in Bubeck [2014], which requires bound of initial error.

Lemma 4.1 (Theorem 5.3, Bubeck [2014]) Assume that f has a Lipschitz Hessian, i.e., $\left\|\nabla^{2} f(x)-\nabla^{2} f(y)\right\| \leq M\|x-y\|$. Let x^{*} be local minimum of f with strictly positive Hessian, that is, $\nabla^{2} f\left(x^{*}\right) \succeq \mu \mathrm{I}_{n}, \mu>0$. Suppose that the initial starting point x_{0} of Newton's method is such that

$$
\left\|x_{0}-x^{*}\right\| \leq \frac{\mu}{2 M}
$$

Then Newton's method is well-defined and converges to x^{*} at a quadratic rate:

$$
\begin{equation*}
\left\|x_{k+1}-x^{*}\right\| \leq \frac{M}{\mu}\left\|x_{k}-x^{*}\right\|^{2} \tag{4.3}
\end{equation*}
$$

Proof: First note that,

$$
\nabla f\left(x_{k}\right)-\nabla f\left(x^{*}\right)=\int_{0}^{1} \nabla^{2} f\left(x^{*}+s\left(x_{k}-x^{*}\right)\right)\left(x_{k}-x^{*}\right) d s
$$

Then using $\nabla f\left(x^{*}\right)=0$, we have

$$
\begin{aligned}
x_{k+1}-x^{*} & =x_{k}-x^{*}-\nabla^{2} f\left(x_{k}\right)^{-1} \nabla f\left(x_{k}\right) \\
& =x_{k}-x^{*}-\nabla^{2} f\left(x_{k}\right)^{-1} \int_{0}^{1} \nabla^{2} f\left(x^{*}+s\left(x_{k}-x^{*}\right)\right)\left(x_{k}-x^{*}\right) d s \\
& =\nabla^{2} f\left(x_{k}\right)^{-1}\left(\nabla^{2} f\left(x_{k}\right)\left(x_{k}-x^{*}\right)-\int_{0}^{1} \nabla^{2} f\left(x^{*}+s\left(x_{k}-x^{*}\right)\right)\left(x_{k}-x^{*}\right) d s\right)
\end{aligned}
$$

By Lipschitz Hessian, we have

$$
\left\|x_{k+1}-x^{*}\right\| \leq\left\|\nabla^{2} f\left(x_{k}\right)^{-1}\right\|_{2} \frac{M}{2}\left\|x_{k+1}-x^{*}\right\|^{2}
$$

then using strong convexity assumption of f in x^{*} and $\left\|x_{k}-x^{*}\right\| \leq \frac{\mu}{2 M}$,

$$
\nabla^{2} f\left(x_{k}\right) \succeq \nabla^{2} f\left(x^{*}\right)-M\left\|x_{k}-x^{*}\right\| \mathrm{I}_{n} \succeq\left(\mu-M\left\|x_{k}-x^{*}\right\|\right) \mathrm{I}_{n} \succeq \frac{\mu}{2} \mathrm{I}_{n}
$$

Then the result follows.

References

S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.
S. Bubeck. Theory of convex optimization for machine learning. arXiv preprint arXiv:1405.4980, 15, 2014.
T. Cai, W. Liu, and X. Luo. A constrained ℓ_{1} minimization approach to sparse precision matrix estimation. Journal of the American Statistical Association, 106(494):594-607, 2011.
R. Y. Chen, A. Gittens, and J. A. Tropp. The masked sample covariance estimator: an analysis using matrix concentration inequalities. Information and Inference: A Journal of the IMA, 1(1):2-20, 2012.
A. De Acosta et al. Inequalities for b-valued random vectors with applications to the strong law of large numbers. The Annals of Probability, 9(1):157-161, 1981.
C. Jin, P. Netrapalli, R. Ge, S. M. Kakade, and M. I. Jordan. A short note on concentration inequalities for random vectors with subgaussian norm. arXiv preprint arXiv:1902.03736, 2019.
M. I. Jordan, J. D. Lee, and Y. Yang. Communication-efficient distributed statistical inference. Journal of the American Statistical Association, 114(526):668-681, 2019.
S. N. Negahban, P. Ravikumar, M. J. Wainwright, B. Yu, et al. A unified framework for highdimensional analysis of m-estimators with decomposable regularizers. Statistical Science, 27(4):538-557, 2012.
R. Vershynin. High-dimensional probability: An introduction with applications in data science, volume 47. Cambridge University Press, 2018.
M. J. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery using ℓ_{1}-constrained quadratic programming (lasso). IEEE transactions on information theory, 55(5):2183-2202, 2009.
M. J. Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cambridge University Press, 2019.
Y. Zhang, J. C. Duchi, and M. J. Wainwright. Communication-efficient algorithms for statistical optimization. The Journal of Machine Learning Research, 14(1):3321-3363, 2013.

[^0]: *Department of Mathematics, Shanghai Jiao Tong University, Eamil: baoyajie2019stat@sjtu.edu.cn

