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1 Preliminaries on random matrix and random vector
The root of high-dimensional statistics is dating back to work on random matrix theory and
high-dimensional testing problems (Negahban et al. [2012]). To develop theoretical results
on linear regression and M-estimator in the diverging dimension case, we need to introduce
some important spectral norm concentration inequalities of random matrix. It’s worthy to
mention that the ”High-dimensional” in this article means that

p = nα, α ∈ (0, 1).

1.1 Concentration inequalities on random matrix norm
For simple normal case, here we states Lemma 9 without proof in Wainwright [2009]:
Lemma 1.1 For k ≤ n, let X ∈ Rn×k have i.i.d rows Xi ∼ N(0,Λ) and δ(n, k, t) :=

2(
√

k
n
+ t) + (

√
k
n
+ t)2

1. If the covariance matrix Λ has maximum eigenvalue Cmax < ∞, then for all t > 0, we
have

P
[∥∥∥∥ 1nXTX − Λ

∥∥∥∥
2

≥ Cmaxδ(n, k, t)

]
≤ 2 exp

(
−nt2/2

)
. (1.1)

2. If the covariance matrix Λ has minimum eigenvalue Cmin > 0, then for all t > 0, we
have

P

[∥∥∥∥∥
(
XTX

n

)−1

− Λ−1

∥∥∥∥∥
2

≥ δ(n, k, t)

Cmin

]
≤ 2 exp

(
−nt2/2

)
. (1.2)

Next we will generalize the concentration inequality to sub-gaussian case. Recall the operator
norm or spectral norm of m× n matrix A is defined by

∥A∥2 := max
x∈Rn\{0}

∥Ax∥2
∥x∥2

= max
x∈Sn−1

∥Ax∥2,

which is the largest singular value of A. For symmetric matrix, the spectral norm is the
largest eigenvalue.
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Lemma 1.2 The covering numbers of the unit Euclidean sphere Sn−1 satisfy the following
for any ε > 0,

N
(
Sn−1, ε

)
≤
(
2

ε
+ 1

)n
.

Lemma 1.3 Let A be an m× n matrix and δ > 0. Suppose that∥∥A⊤A− In
∥∥ ≤ max

(
δ, δ2

)
,

then
(1− δ)∥x∥2 ≤ ∥Ax∥2 ≤ (1 + δ)∥x∥2 for all x ∈ Rn.

Proof: W.L.O.G, let ∥x∥2 = 1.Using the assumption we have

max
(
δ, δ2

)
≥
∣∣〈(A⊤A− In

)
x, x
〉∣∣ = ∣∣∥Ax∥22 − 1

∣∣ .
Applying the elementary inequality,

max
(
|z − 1|, |z − 1|2

)
≤
∣∣z2 − 1

∣∣ , z ≥ 0

for z = ∥Ax∥2, we concluded that ∥Ax∥2 − 1| ≤ δ.
Then we introduce the two-sided bounds on the entire spectrum of m × n matrix A (see
Vershynin [2018], page 97).

Theorem 1.4 (Two-sided spectral norm bounds) Let A be an m × n matrix whose
rows Ai are independent, mean zero, sub-gaussian isotropic random vectors in Rn. Then for
any t > 0 we have

√
m− CK2(

√
n+ t) ≤ sn(A) ≤ s1(A) ≤

√
m+ CK2(

√
n+ t) (1.3)

with probability at least 1− 2 exp (−t2). Here K = maxi ∥Ai∥ψ2
.

Proof: Using Lemma 1.3, it suffices to show∥∥∥∥ 1

m
A⊤A− In

∥∥∥∥ ≤ K2max
(
δ, δ2

)
where δ = C

(√
n

m
+

t√
m

)
.

By Lemma 1.2, we can find an 1
4
−net N of the unit sphere Sn−1 with cardinality |N | ≤ 9n.

Then we can evaluate operator norm on the N ,∥∥∥∥ 1

m
A⊤A− In

∥∥∥∥ ≤ 2max
x∈N

∣∣∣∣〈( 1

m
ATA− In

)
x, x

〉∣∣∣∣ = 2max
x∈N

∣∣∣∣ 1m∥Ax∥22 − 1

∣∣∣∣ . (1.4)

Let Xi = xTAi which is indpendent sub-gaussian random variables, note that

1

m
∥Ax∥22 − 1 =

1

m

m∑
i=1

[(xTAi)
2 − 1] =

1

m

m∑
i=1

(X2
i − 1),
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Using the fact that Ai are isotropic and ∥x∥2 = 1, ∥Xi∥ϕ2 ≤ K. Then X2
i − 1 is sub-

exponential random variables satisfying that ∥X2
i − 1∥ϕ1 ≤ CK. By Bernstein inequality

and we obtain

P
{∣∣∣∣ 1m∥Ax∥22 − 1

∣∣∣∣ ≥ ε

2

}
= P

{∣∣∣∣∣ 1m
m∑
i=1

X2
i − 1

∣∣∣∣∣ ≥ ε

2

}

≤ 2 exp

[
−c1min

(
ε2

K4
,
ε

K2

)
m

]
= 2 exp

[
−c1δ

2m
]

≤ 2 exp
[
−c1C

2
(
n+ t2

)]
,

where the second equality follows that ε
K2 = max (δ, δ2) and the last inequality follows that

(a+ b)2 ≥ (a2 + b2). Using (1.4) we have

P
(∥∥∥∥ 1

m
A⊤A− In

∥∥∥∥ ≥ K2max
(
δ, δ2

))
≤ P

(
2max
x∈N

∣∣∣∣ 1m∥Ax∥22 − 1

∣∣∣∣ > K2max
(
δ, δ2

))
≤ 2 · 9n exp

[
−c1C

2
(
n+ t2

)]
.

Choose sufficiently large C and the result follows.
After proving this conclusion, we can apply this to covariance matrix estimation.

Theorem 1.5 Let X be a p−dimensional multivariate sub-gaussian random variables with
covariance matrix Σ and mean 0, and there exists K ≥ 1 such that

∥⟨X, x⟩∥ψ2 ≤ KxTΣx for any x ∈ Rp. (1.5)

Then for sample covariance matrix Σ̂n we have

∥Σn − Σ∥ ≤ Cλmax(Σ)K
2

(√
p+ t2

n
+

p+ t2

n

)
(1.6)

holds with probability at least 1− exp(−t2/2).

Proof: Let Zi = Σ−1/2Xi, then Zi are independent isotropic sub-gaussian random vector.
Using (1.5) we have

∥Zi∥ϕ2 = sup
x∈Sp−1

∥⟨Zi, x⟩∥ψ2 ≤ K. (1.7)

Then note that,
∥Σn − Σ∥ =

∥∥Σ1/2RnΣ
1/2
∥∥ ≤ ∥Rn∥ ∥Σ∥,

where
Rn :=

1

n

n∑
i=1

ZiZ
⊤
i − Ip.

Let A be the n× p matrix with rows Zi, then apply Theorem 1.4 we obtain that

∥Σn − Σ∥ ≤ K2∥Σ∥max
(
δ, δ2

)
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holds with at least probability 1− 2 exp(−t2/2). Moreover,

max
(
δ, δ2

)
≤ δ + δ2 ≤ C

(√
p+ t2

n
+

p+ t2

n

)
.

Thus the proof is completed.
Remark. The theorem above implies that for low dimensional setting, i.e., p < n

∥Σn − Σ∥ = Op

(√
p

n

)
. (1.8)

Using the fact that ∥∥Σ−1
n − Σ−1

∥∥ = Ωp (∥Σn − Σ∥) ,
then if λmin(Σ) > 0 we have ∥∥Σ−1

n − Σ−1
∥∥ = Op

(√
p

n

)
. (1.9)

1.2 Concentration inequalities on random vextor norm
We start with the definitions of subGaussian random vectors and norm-subGaussian random
vectors.

Definition 1.6 A random vector X ∈ Rd is subGaussian, if there exists σ ∈ R so that

Ee⟨v,X−EX⟩ ≤ e
∥v∥l2σ2

2 , ∀v ∈ Rd. (1.10)

Definition 1.7 A random vector X ∈ Rd is norm-subGaussian (nSG(σ)), if there exists
σ ∈ R so that

P(∥X− EX∥ ≥ t) ≤ 2e−
t2

2σ2 , ∀t ∈ R. (1.11)

Norm-subGaussian random vectors is proposed by Jin et al. [2019], which includes both
subGaussian (with a smaller σ parameter) and bounded norm random vectors as special
cases.

Lemma 1.8 There exists absolute constant c so that following random vectors are all nSG(c·
σ)

1. A bounded random vector X ∈ Rd so that ∥X∥ ≤ σ.

2. A random vector X ∈ Rd where X = ξe1 and random variable ξ ∈ R is σ−subGaussian.

3. A random vector X ∈ Rd that is (σ/
√
d)−subGaussian.

Theorem 1.9 (Jin et al. [2019]) There exists an absolute constant c such that if X1, . . . ,Xn ∈
Rd are independent zero-mean nSG(σ) random vectors. Then for any δ > 0, with probability
at least 1− δ ∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥ ≤ c ·

√√√√ n∑
i=1

σ2
i log

2d

δ
. (1.12)
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From Theorem 1.9, we can obtain that∥∥∥∥∥ 1n
n∑
i=1

Xi

∥∥∥∥∥ = Op

(√
log d

n

)
.

And in section 2, we will prove that the random vectors X i with sub-gaussian coordinates
assumption has the following convergence rate∥∥∥∥∥ 1n

n∑
i=1

Xi

∥∥∥∥∥ = Op

(√
d log d

n

)
.

In section 3, we assume that the random vectors X i with bounded expectation of norm, i.e.,
E (∥Xi∥22) ≤ M , which leads ∥∥∥∥∥ 1n

n∑
i=1

Xi

∥∥∥∥∥ = Op

(√
1

n

)
.

2 Linear regression
Now consider the following linear regression model with random ensembles:

yi = XT
i β

∗ + ei, i = 1, 2, ..., n (2.1)

where ei, i = 1, 2, ..., n are independent sub-gaussion random variables with mean 0 and
parameter σ and β∗ ∈ Rp. We have known that the LSE of β∗ is

β̂ =

(
1

n

n∑
i=1

X iX
T
i

)−1(
1

n

n∑
i=1

yiX i

)
. (2.2)

Theorem 2.1 (Consistence) For linear regression model (2.1), suppose that Xi are inde-
pendent sub-gaussion random vectors with same mean 0 and covariance matrix Σ and Xi

are independent with ei. Assume that λmin(Σ) = λ0 > 0 and ∥Xi∥ψ2 ≤ K, then∥∥∥β̂ − β∗
∥∥∥
2
= Op

(√
p log p

n

)
. (2.3)

Proof: By (2.1),

∥∥∥β̂ − β∗
∥∥∥
2
=

∥∥∥∥∥∥
(
1

n

n∑
i=1

X iX
T
i

)−1(
1

n

n∑
i=1

X iei

)∥∥∥∥∥∥
2

(2.4)

=

∥∥∥∥∥Σ̂−1
n

(
1

n

n∑
i=1

X iei

)∥∥∥∥∥
2

≤ ∥Σ̂−1
n − Σ−1∥2

∥∥∥∥∥
(
1

n

n∑
i=1

X iei

)∥∥∥∥∥
2

+ ∥Σ−1∥2

∥∥∥∥∥
(
1

n

n∑
i=1

X iei

)∥∥∥∥∥
2

.
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All we need to do is bounding the term
∥∥( 1

n

∑n
i=1 X iei

)∥∥
2
, let Zij = Xijei. Using the basic

inequality |ab| ≤ a2+b2

2
and s2es ≤ e2s, for η > 0 we have

E
(
Z2
ije

η|Zij |
)
≤ E

(
η−2 exp(2η|Zij|)

)
≤ η2E

[
exp

(
2ηX2

ij

)
exp

(
2ηe2i

)]
≤ η2

√
E
[
exp

(
2ηX2

ij

)]
E [exp (2ηe2i )].

Then by the property of sub-gaussian random variable, there exists some M > 0, such that
E
[
exp

(
2ηX2

ij

)]
≤ M,E

[
exp

(
2ηe2i

)]
≤ M.

Next use the exponential inequality in Cai et al. [2011], we set B̄2
n = nMη−2

P

(
p

max
j

∣∣∣∣∣ 1n
n∑
i=1

Zij

∣∣∣∣∣ > C

√
log p

n

)
≤

p∑
j=1

P

(∣∣∣∣∣
n∑
i=1

Zij

∣∣∣∣∣ > C
√

n log p

)

=

p∑
j=1

P

(
n∑
i=1

|Zij| > CB̄nM
−1η
√
log p

)
= p−γ.

And if we choose sufficiently large C, we can obtain that

p
max
j

∣∣∣∣∣ 1n
n∑
i=1

Zij

∣∣∣∣∣ = Op

(√
log p

n

)
.

The proof is completed by (2.4) and Theorem 1.5.
The theorem above implies that if p log p = o(n), LSE is consistent. Next we will give

the central limt theorem for LSE.
Theorem 2.2 (Asymptotic Normality) Under the condition of Theorem 2.1, and as-
sume that covariates X and noise e are independent. We have

√
n
(
β̂ − β∗

)
d−→ N

(
0, σ2Σ−1

)
(2.5)

Proof: Note that,

√
n
(
β̂ − β∗

)
=

(
1

n

n∑
i=1

X iX
T
i

)−1(
1√
n

n∑
i=1

X iei

)
. (2.6)

By law of large numbers,
1

n

n∑
i=1

X iX
T
i

p−→ Σ.

And using the independence, we have E (X iei) = 0 and
E (X iei) (X iei)

T = σ2Σ.

Thus by multivariate central limt theorem,
1√
n

n∑
i=1

X iei
d−→ N

(
0, σ2Σ

)
Then the result follows from Slutsky’s Lemma.
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3 M estimator
Given sample {Xi, i = 1, 2, ..., n} ∈ Xn is drawn independently according to some distribution
P. And in the well-specified case the distribution P is a member of parameterized family
{Pθ, θ ∈ Ω} , where Ω is the parameter space, then the goal is to estimate parameter θ∗. For
mis-specified models, in which case the target parameter θ∗ is defined as the minimizer of
the population lost function (see Wainwright [2019]).

A function Ln : Ω × Xn used to measure the goodness of estimation using sample Xn,
which is called lost function. The population lost function is defined as

L(θ) = E (Ln (θ,Xn)) , (3.1)

where
Ln (θ,Xn) =

1

n

n∑
i=1

L(θ, Xi).

Next we define the target parameter as the minimum of the population lost function

θ∗ = argmin
θ∈Ω

L(θ). (3.2)

For example, the negative log-likelihood function is a lost function. Our overall estimator is
based on solving the optimization problem

θ̂ ∈ argmin
θ∈Ω

{Ln (θ;Zn
1 ) + λnΦ(θ)} , (3.3)

where λn > 0 is regularization parameter and Φ(θ) : Ω → R is the penalty function. The
estimator (3.3) is called M estimator, where the “M” stands for minimization (or maxi-
mization). We begin with no-penalty problem, and the following assumptions is needed to
estabilish theory results, and these assumptions can be found in Zhang et al. [2013] and
Jordan et al. [2019].

Assumption 3.1 (Parameter space) The parameter space Θ is a compact and convex
subset of Rp. Moreover, θ∗ ∈ int(Θ) and R := supθ∈Θ ∥θ − θ∗∥2 > 0.

Assumption 3.2 (Local convexity) The lost function L(Xi,θ) is twice differentiable with
respective to θ, and the Hessian matrix I(θ) = ∇2L(θ) of the population lost function
L(θ) is invertible at θ∗. Moreover, there exists two positive constants µ− < µ+ such that
µ−Id ⪯ I(θ) ⪯ µ+Id.

Assumption 3.3 (Smoothness) There exists some positive constant (G,L) and positive
integers (k0, k1), such that

E
[
∥∇L(θ, X)∥k02

]
≤ Gk0 , E

[
∥∇2L(θ, X)−∇2L(θ)∥k12

]
≤ Lk1 . (3.4)

Moreover, for all θ1,θ2 ∈ U(θ∗, ρ) (a ball around the truth θ∗ with radius ρ > 0) there exists
some positive constant M and some positive integer k2 such that∥∥∇2L(θ1, X)−∇2L(θ2, X)

∥∥
2
≤ M(X)∥θ1 − θ2∥2, (3.5)

and E[M(X)k2 ] ≤ Mk2.
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Before bound the ℓ2 error between the optimization solution θ̂ and ture parameter θ∗, we
state the following Lemma.
Lemma 3.4 For convex function f(x), x∗ is the global minimizer of f(x). If for any
x ∈ {x : |x− x̃|2 = a}, s.t., f(x) ≥ f(x̃), then

|x∗ − x̃| ≤ a.

Proof: If there exists x
′ such that |x′ − x̃|2 > a and f(x

′
) ≤ f(x∗). By the convexity of f ,

we have
f(αx

′
+ (1− α)x̃) ≤ αf(x

′
) + (1− α)f(x̃) < f(x̃),

where 0 < α < 1. Note that

|αx′
+ (1− α)x̃− x̃| = α|x′ − x̃|,

let α = |x′ − x̃|/|x∗ − x̃|, then |αx′
+ (1− α)x̃− x̃| = a. But

f(αx
′
+ (1− α)x̃) < f(x̃),

which is a contradiction.
Next we state Lemma 7 in Zhang et al. [2013] without proof as following:
Lemma 3.5 Under Assumption 3.3, there exist some constants C1 and C2 (dependent only
on the moments k0 and k1 respectively) such that

E
[
∥∇Ln (θ∗)∥k02

]
≤ C1

Gk0

nk0/2
, (3.6)

E
[∥∥∇2Ln (θ∗, X)−∇2L (θ∗)

∥∥k1
2

]
≤ C2

logk1/2(2p)Lk1

nk1/2
. (3.7)

Theorem 3.6 Under Assumption 3.2 and Assumption 3.3,

∥θ̂ − θ∗∥ = Op

(
1√
n

)
. (3.8)

Proof: According to Lemma 3.4, it suffices to show that for any θ satisfying ∥θ − θ∗∥2 =

O
(

1√
n

)
such that

Ln (θ) ≥ Ln (θ∗) .

Taking Taylor expansion for Ln (θ) at θ∗,

Ln (θ) = Ln (θ∗) +∇Ln (θ∗)T (θ − θ∗) +
1

2
(θ − θ∗)T ∇2Ln(θ̃) (θ − θ∗) , (3.9)

where θ̃ is some point between θ and θ∗. Define the following three events:

E0 :=

{
1

n

n∑
i=1

M (Xi) ≤ 2M

}
,

E1 :=
{∥∥∇2Ln (θ∗, X)−∇2L (θ∗)

∥∥
2
≤ µ−

2

}
,

E2 :=
{
∥∇Ln (θ∗) ∥2 ≤

C0√
n

}
.
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Using Assumption 3.2, Assumption 3.3 and Markov inequality

P (Ec0 ∪ Ec1) ≤
C3

nk2/2
+

C4 log
k1/2(2p)

nk1/2
.

Since ∥θ − θ∗∥2 = O
(

1√
n

)
, there exists some positive constant C such that

∥θ − θ∗∥2 =
C

′
µ−

2
√
n

Under event E0 ∩ E1, we can bound ∇2Ln(θ̃) by

λmin

(
∇2Ln(θ̃)

)
≥ λmin (I(θ

∗))− ∥∇2Ln(θ∗)− I(θ∗)∥2 − ∥∇2Ln(θ̃)−∇2Ln(θ∗)∥2

≥ µ− − µ−

2
− 2M∥θ − θ∗∥2

= (1− 2MC
′

√
n

)
µ−

2
.

Using (3.6) and Jessen inequlity, we have

E [∥∇Ln(θ∗)∥2] = E
[(
∥∇Ln(θ∗)∥k02

)1/k0] ≤ (E [∥∇Ln(θ∗)∥k02
])1/k0

≤ C1G√
n
.

Then event E2 happens with high probability, which follows from Op(Yn) = O(Y⋉). Therefore
under event E0 ∩ E1 ∩ E2 we have

Ln (θ)− Ln (θ∗) ≥ ∇Ln (θ∗)T (θ − θ∗) + (1− 2MC
′

√
n

)
µ−

2
∥θ − θ∗∥22

≥ −∥∇Ln (θ∗) ∥2∥θ − θ∗∥2 + (1− 2MC
′

√
n

)
µ−

2
∥θ − θ∗∥22

≥ −C
′
µ−

2
√
n

C0√
n
+ (1− 2MC

′

√
n

)
µ−

2

(C
′
µ−)

2

4n
.

If we choose sufficiently large C
′ , Ln (θ)− Ln (θ∗) ≥ 0 holds with high probability.

Remark. Note that, if we substitute moment condition for gradient in (3.4) by

E
[
∥∇L(θ, X)∥k02

]
≤ pk0/2Gk0 ,

we can obtain the new convergence rate

∥θ̂ − θ∗∥ = Op

(√
p

n

)
.

The following asymptotic result can help us conduct statistical inference, such as interval
estimation and hypothesis testing.
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Theorem 3.7 Under Assumption 3.2 and Assumption 3.3,
√
n
(
θ̂ − θ∗

)
d−→ N

(
0, Σ̃

)
, (3.10)

where
Σ̃ = I(θ∗)−1E

[
∇L(θ∗, X)T∇L(θ∗, X)

]
I(θ∗)−1.

Proof: First we perform Taylor expansion for ∇Ln(θ̂) around θ∗,

0 = ∇Ln(θ̂) = ∇Ln(θ∗) +∇2Ln(θ∗)
(
θ̂ − θ∗

)
+ uOp(∥θ̂ − θ∗∥22),

where u ∈ Rp is the unit vector. Then taking simple linear algebra we obtain

θ̂ − θ∗ = −∇2Ln(θ∗)−1∇Ln(θ∗) +
C

n
∇2Ln(θ∗)−1u.

Using law of large numbers, multivariate central limt theorem and Slutsky’s lemma, we have

√
n
(
θ̂ − θ∗

)
=

(
1

n

n∑
i=1

∇2L(θ∗, Xi)

)−1(
1√
n

n∑
i=1

∇L(θ∗, Xi)

)
+

C√
n
∇2Ln(θ∗)−1u

d−→ N
(
0, Σ̃

)
.

Remark. The following plug-in estimator is a consistent estimator for Σ̃,(
1

n

n∑
i=1

∇2L(θ̂, Xi)

)−1(
1

n

n∑
i=1

∇L(θ̂, Xi)L(θ̂, Xi)
T

)(
1

n

n∑
i=1

∇2L(θ̂, Xi)

)−1

(3.11)

More generally, by Assumption 3.3 we set ρ ∈ (0, 1), then choosing the potentially smaller
radius δρ = min{ρ, ρµ−/4L}. We can define the following good events

E0 :=

{
1

n

n∑
i=1

M (Xi) ≤ 2M

}
,

E1 :=
{∥∥∇2Ln (θ∗, X)−∇2L (θ∗)

∥∥
2
≤ ρµ−

2

}
,

E2 :=
{
∥∇Ln (θ∗) ∥2 ≤

(1− ρ)µ−δρ
2

}
.

The following lemma is Lemma 6 in Zhang et al. [2013].

Lemma 3.8 Under the events E0, E1 and E2, we have

∥θ1 − θ∗∥2 ≤
2 ∥∇F1 (θ

∗)∥2
(1− ρ)µ−

, and ∇2F1(θ) ⪰ (1− ρ)µ−Ip×p. (3.12)
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We can assume that ∥θ̂ − θ∗∥2 ≤ R, then make decomposition as

E
[∥∥∥θ̂ − θ∗

∥∥∥k
2

]
= E

[
1(E)

∥∥∥θ̂ − θ∗
∥∥∥k
2

]
+ E

[
1(Ec)

∥∥∥θ̂ − θ∗
∥∥∥k
2

]

≤
2kE

[
1(E) ∥∇Ln (θ∗)∥k2

]
(1− ρ)kλk

+ P (Ec)Rk

≤
2kE

[
∥∇Ln (θ∗)∥k2

]
(1− ρ)kλk

+ P (Ec)Rk.

Using Assumption 3.2, Assumption 3.3 and Lemma 3.4, we can prove

P (Ec) ≤ C2
1

nk2/2
+ C1

logk1/2(2d)Hk1

nk1/2
+ C0

Gk0

nk0/2
,

for some universal constants C0, C1, C2. Therefore for any k ∈ N with k ≤ min {k0, k1, k2}
we have

E
[
∥θ1 − θ∗∥k2

]
= O

(
n−k/2 · Gk

(1− ρ)kλk
+ n−k0/2 + n−k1/2 + n−k2/2

)
= O

(
n−k/2) . (3.13)

We can also obtain the ℓ2 error bound ∥θ̂ − θ∗∥2 = Op

(
1√
n

)
form (3.13). There are two

very useful concentration inequlities for random vector and random matrix, which is used to
prove Lemma 3.5 (Lemma 7 in Zhang et al. [2013]).

Lemma 3.9 (De Acosta et al. [1981]) Let k ≥ 2 and Xi be a sequence of independent
random vectors in a separable Banach space with norm ∥ · ∥ and E

[
∥Xi∥k

]
< ∞. There

exists a finite constant Ck such that

E

∣∣∣∣∣
∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥− E

[∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
]∣∣∣∣∣
k
 ≤ Ck

( n∑
i=1

E
[
∥Xi∥2

])k/2

+
n∑
i=1

E
[
∥Xi∥k

] . (3.14)

Lemma 3.10 (Chen et al. [2012]) Let Xi ∈ Rd×d be independent and symmetrically dis-
tributed Hermitian matrices. Then

E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
k
1/k

≤
√
2e log d

∥∥∥∥∥∥
(

n∑
i=1

E
[
X2
i

])1/2
∥∥∥∥∥∥+ 2e log d

(
E
[
max
i

∥Xi∥k
])1/k

. (3.15)

4 Newton Raphson algorithm
For optimization probelm (3.3), there are no analytic solutions usually. And Newton Raph-
son algorithm use iteration method to approximate solution θ̂,

θt = θt−1 − η∇2Ln(θt−1)
−1∇Ln(θt−1), (4.1)
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where η ∈ (0, 1) is step size. According to optimal condition we have

θt − θ̂ = θt−1 − θ̂ − η∇2Ln(θt−1)
−1∇Ln(θt−1)

= θt−1 − θ̂ − η∇2Ln(θt−1)
−1
(
∇Ln(θt−1)−∇Ln(θ̂)

)
= θt−1 − θ̂ − η∇2Ln(θt−1)

−1∇2Ln(θ̃)
(
θt−1 − θ̂

)
=
(
Ip − η∇2Ln(θt−1)

−1∇2Ln(θ̃)
)(

θt−1 − θ̂
)
,

where θ̃ is some point between θt−1 and θ̂. Then we obtain∥∥∥θt − θ̂
∥∥∥
2
≤
∥∥∥Ip − η∇2Ln(θt−1)

−1∇2Ln(θ̃)
∥∥∥
2

∥∥∥θt−1 − θ̂
∥∥∥
2
,

if we assume that for some positive constant c so that

c ≤ λ
(
∇2Ln(θt−1)

−1∇2Ln(θ̃)
)
≤ c−1, (4.2)

then there exists some ρη ∈ (0, 1)∥∥∥θt − θ̂
∥∥∥
2
≤ ρη

∥∥∥θt−1 − θ̂
∥∥∥
2
≤ · · · ≤ ρtη

∥∥∥θ0 − θ̂
∥∥∥
2
,

which achives exponential convergence rate. Obviously, the error of Newton update can be
bounded by

∥θt − θ∗∥2 = O
(
ρtηan

)
+Op (∇Ln(θ∗)) ,

where an is the initial estimation error bound ∥θ0 − θ∗∥2. Condition (4.2) is quite rigorous,
and the general Newton update convergence analysis can be found in Boyd and Vandenberghe
[2004]. Next we give the convergence rate of Newton method in Bubeck [2014], which requires
bound of initial error.

Lemma 4.1 (Theorem 5.3, Bubeck [2014]) Assume that f has a Lipschitz Hessian, i.e.,
∥∇2f(x)−∇2f(y)∥ ≤ M∥x−y∥. Let x∗ be local minimum of f with strictly positive Hessian,
that is, ∇2f (x∗) ⪰ µIn, µ > 0. Suppose that the initial starting point x0 of Newton’s method
is such that

∥x0 − x∗∥ ≤ µ

2M
.

Then Newton’s method is well-defined and converges to x∗ at a quadratic rate:

∥xk+1 − x∗∥ ≤ M

µ
∥xk − x∗∥2 . (4.3)

Proof: First note that,

∇f(xk)−∇f(x∗) =

∫ 1

0

∇2f(x∗ + s(xk − x∗))(xk − x∗)ds.
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Then using ∇f(x∗) = 0, we have

xk+1 − x∗ = xk − x∗ −∇2f(xk)
−1∇f(xk)

= xk − x∗ −∇2f(xk)
−1

∫ 1

0

∇2f(x∗ + s(xk − x∗))(xk − x∗)ds

= ∇2f(xk)
−1

(
∇2f(xk)(xk − x∗)−

∫ 1

0

∇2f(x∗ + s(xk − x∗))(xk − x∗)ds

)
By Lipschitz Hessian, we have

∥xk+1 − x∗∥ ≤
∥∥∇2f(xk)

−1
∥∥
2

M

2
∥xk+1 − x∗∥2 ,

then using strong convexity assumption of f in x∗ and ∥xk − x∗∥ ≤ µ
2M

,

∇2f (xk) ⪰ ∇2f (x∗)−M ∥xk − x∗∥ In ⪰ (µ−M ∥xk − x∗∥) In ⪰ µ

2
In.

Then the result follows.
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