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Classical Statistics always has a basic assumption: n > p, and many estimation methods
with good asymptotic properties were build based on this assumption. Many multivariate
statistical models (see Anderson [1958]) will fail when the number of variates is greater than
sample size, such as linear regression, LDA, PCA... And in many situations, the dimension
p will increase with the growth of sample size n.

Take the normal mean estimation as an example, X;, ¢ = 1,2, ...,n are i.i.d samples from
multivariate normal distribution N(p,0%I,), and sample mean X is the minimax estimator
of p. Note that the minimax error is

p
E(X—p)’ =Y E(X;—u)' = =
=1

and obviously X is not a consistent estimator when n = o(p), which is called the curse of
dimensionality. R
Another example is LDA, we need to compute the linear discriminant vector X (X — Y).

The rank of sample covariance matrix is min{n,p} = n, which means ¥ is non-invertible.

~—1
So we can’t obtain ¥  directly.

1 (aussian sequence model

A toy model in high-dimensional statistics is the Gaussian sequence model,

where z;; are i.i.d normal r.v with mean 0 and variance o2 for each j. Now we have n
observations for each y; to estimate 8 = (i, ..., B,). To overcome this problem, we need to
add some assumptions on high-dimensional parameter 8. A direct thought is sparsity, i.e.,
there are only few non-zero elements in 3. And this assumption can be written as

p

S8, £0) < so. (1.2)
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Next step is to find the positions of non-zero parameter entries and obtain their estimation,
and the first part of our goal is also called support recovery. If 3; = 0, then ,éj =Y, will
be quite small. Thus we can only keep 6}» with large magnitude, which leads to the idea of
thresholding.

There are many thresholding functions like hard thresholding, soft thresholding (see
Donoho and Johnstone [1994]), SCAD (see Fan and Li [2001]) etc. Here we use hard thresh-
olding method

B =Y(|y;| >t), vie{1,....p} (1.3)

where Y; = >°7 yij/n. Next we will give some theoretical results on estimation error and
support recovery. Before this we need a lemma on the bound of max; ‘Y; — ﬁj‘

Lemma 1.1 For the sample mean Yj, j=12,...,p

. lo
wiax |Y; — 8] = O, (\/ Sp>- (1.4)

Proof: let X; =Y, — 3; = %, where zj; ~ N(0,0?%) and independent. Using the tail

probability of normal random variables and the fact X; ~ N (0, %2), we have

p
p
P (r?gngjl > t) < ;P(IXJ-I > t)

nt?
< 2pexp 552 )

Set t = Ay /82 for sufficiently large A and the result follows. [ ]

n

Theorem 1.2 (Support recovery) Let S(3) = {j : |5;| # 0} and S(B) = {j: |B\]| # 0},

2log(2p/d 2log(2p/d
n

assume that minjeg |5;| > o - ) and sett = o ) then with probability at least

1-96,
S(B) = S(B). (1.5)

Proof: According to the proof of Lemma 1.1, with probability at least 1 — 9,

_ 2log(2p/o
max |V; — ;| <o 2log(2p/9)
i=1 n
If j € S, then \B\]] > 0, otherwise the error will be great than o M. If j € S¢ then
]P’(\ﬂj|:O> =P(|Y; =8| >t)<1-4.

Then we have completed the proof. [ ]



Theorem 1.3 (¢, error bound) Under the assumption (1.2) and set thresholdt = 10%

~ P 1
188l =15~ 8l =0, (w O;fp) , (16)

j=1

where \ > \/20.

Proof: First using the assumption (1.2) and Lemma 1.1, we have

-5

1_i|m(m|2t)—ﬂjl
=Y L(Y] = 6) = 85+ > I (];] = 1)

jes jese
<D =B+ ) T < t) + > [VE(Yi] = 1)
JjeSs JjeS jese

gsor?zalx‘%—ﬁj‘ +Sot+r?zalx‘}7j_ﬁj‘ ZH(’YJ’ Zt)

jese
1
-0, <30 ng) 41
n

Then note that when 3; = 0, Y; ~ N(0, %) and

]P’(Z]I(\Yj} > t) >0> :P(rj;é%§|}7j\ 2t)

jese
AQ
< 2pexp (—27‘2 logp)

AQ
=2exp | —=—=logp+logp | — 0.
202

Thus I = o, (so e > and the result follows. u

Remark. Through the analysis above, under the sparsity assumption (1.2), if sq k’% -0
then hard thresholding estimator is still consistent.

Theorem 1.4 ({s error bound) Under the assumption (1.2) and set thresholdt = My /52
for some My > 0, then we have

1B = Bl = Oy <\/1O§p>. (1.7)
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Proof: Note that there exists some Cj such that,

18 = Bllso < mlax |Y; — 5] + méx [V 1 (|Y] < 1)

1
< Cpy/ 2L 14
n

Remark. Using the simple norm inequality and Theorem 1.2, we have {5 error bound

1B =82 < V3B =Bl = 0, (\/Slj’fp> . (18)

And according to Johnstone [1986], (1.8) is statistical minimax lower bound of sparse mean
estimation.

2 New tail bound assumption

Note that the assumption of normality is used to construct tail bound (1.4), and this as-
sumption can be substituted by the following condition:

Assumption 2.1 (Exponential-type tails) Suppose that there exists some v > 0 such
that
Eexp (tz})) < K1 <oo  for all [t| <~ and i, j (2.1)

Here we use a lemma in Cai and Liu [2011] as following:

Lemma 2.2 Let &y, ..., &, be independent random variables with mean 0. Suppose that there
exists some 1 > 0 and B2 such that Y ,_, E€2e&! < B2, Then for 0 < x < B,,

P (i & > C’anx> < exp (—xz) , (2.2)
k=1

where C,, =n+n~t.

Proof: By the inequality |e® — 1 — s| < s%el*l, we have for any t > 0,

—=

' (i& > C”B“I> < exp (~1C, Br) [ Bexp (165)

k=1 k=1

(1+ PEE2HE)

—=

< exp (—tC’anx)

B
Il

1
n

_|_

< exp (—tCanx tZEf,%et'&’“') .

k=1



Take t = (x/B,), it follows that

P (Z & > Canx> < exp (—770,,71:2 + 7]2952) = exp (—x2) )
k=1

Theorem 2.3 Assume that the noise z;; satisfying Assumption 2.1, we have

- lo
I?Exlx‘Y] —Bi| =0, (\/ ip) . (2.3)

Proof: Using the simple inequality

we have for each 7, j

E (25e"%1) <E (n72 exp(2n]2:4])) < eE (1% exp(n?|2i4]?)) -

By Assumption 2.1, we can set B
B? = nen K,

n —

where 0 < n < /7. Then for sufficiently large 7
P o log p u u
P(I?fix‘yj_ﬁj‘>c\/ - SZIP 2|Zij|>0\/n10gp
j= i=
. _ _1
=pP (Z |zij| > CB,e 'K, ? \/logp>
i=1

— 0,

whcih completes the proof. ]

Remark. Assumption 2.1 is very similar to sub-Gaussian (see Vershynin [2018]), which has
tail
P{|X| >t} < 2exp (—t*/K}) forallt>0. (2.4)

And there is concentration inequality about sum of independent sub-Gaussian random vari-
ables.

Theorem 2.4 (General Hoeffding’s inequality) Let X;, i = 1,2,.... N be be indepen-
dent, mean zero, sub-gaussian random wvariables with parameter o;, then for every t > 0,

IF’{ > t} < 2exp (—%) : (2.5)

Besides Exponential-type tails, there is another common tail called Polynomial-type tails.

N

>

=1
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Assumption 2.5 (Polynomial-type tails) Suppose that for some v > 0,
E |z < K for all i, ;. (2.6)
Theorem 2.6 Under the Assumption (2.5), we have
1/2(14)
Iy p
max |Y; — 8| = O, (W) : (2.7)

Proof: We use a moment inequality in Shao [2003], for ¢ > 0

n q n
C,
i=1 i=1

By Markov inequality,

E[D 70 2 |2(1+7)
(nt)20+)

< Cn1+7K2

S EECE)

= pC, Kon~ (141 ¢=2047),

P (ulie[¥; - 2] > 1) <

p1/20147)

Let t = M*—— for sufficiently large M, then we complete the proof. [ ]
Remark. If we take threshold ¢t = MZ 1/21(: ' then the convergence rate of ¢, error will be

pl/2(1+7)

Op(s077—)-

3 New sparsity assumption

Sparsity assumption (1.2) is actually an ¢, ball in R?, which can be genlized to ¢, ball in R?,
ie,for0<¢g<1

U(q,s,) = {ﬁeRP;Z|@j|qgsq}. (3.1)

Next we will build convergence rate of ¢,, and the proof is very similar to the Theorem 1 in
Bickel and Levina [2008].

Theorem 3.1 (¢; error bound) If 3 € U (q,s,) and set threshold t,, = My/"E2 for suf-

ficiently large M. Suppose thta noise z;; are sub-Gaussian random variables with same
parameter o, then

|3-5| Zlﬁg 5l=0 ( (10519)“@/2) (3.2
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Proof: Let T}, be hard thresholding function with threshold ¢,,, then note that

|-8| <lm, ()-8, +18-T. @l

By 8 € U (q,s,) we have

18T, (B, = ZIBJ BiL(1B;] > tn)
= Z 1651 L(155] < tn)

p

<Y BI85 < )
j=1

< st

Next we will bound the first term of (3.3),

1T, (Y) =T, (B, <DLV = ta, 18] < tn)

j=1

p
30V = BTV 2 s 18] > )

j=1
p p—
Y IBIT(Y] < ta, 18] > tn)
j=1
=1+ 1I+ III.

For the second term, there exists some C > 0 such that,

II<Z|Y BilL( 1851 > tn)

7j=1
SI?:a |Y 53‘211 |ﬁ]|>t)

log p
n

IN

Cl Sqt;q.

For the third term,

<8~ V108 = ta) + ta S L(5] > 1)
j=1 j=1

/1
< insqt;q + s th7a.




For the first term,

p p
1< SO = BT = tas 18,1 < t2) + SOIBIT(YH] 2 e, 18] < ta)
j=1 j=1

p
< ST BT 2 b 5] < 1) + st
=1
=1V + s, "
Now take v € (0,1),
P - P _ _
V=3 1% = B LYl = ta 18] < vta) + 30 [V = BTV = b, vt < 1851 < )

j—l j—l

<Z\Y Bi|L(IY| 2 ta, 18] < tn) +Z|Y B 1(18;] = vta)

< 01\/ osp ZH ‘Y 6]‘ >(1—7 )+01 fjpsq(vtn)‘q,

moreover using (2.4) and make (1 —v)>M > 202 we have

p (ZH(P@ = Bi| > (1 =)tn) > 0) =P (@Eflﬁ* - Bl > (1 —v)tn)

1—7)?2M1

< pexp _(1=9)*Mlogp
202
1—7)*M
=exp | logp — ﬁlogp
202
— 0.
Combining the inequalities above, (3.2) is proved. [
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