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Classical Statistics always has a basic assumption: n > p, and many estimation methods
with good asymptotic properties were build based on this assumption. Many multivariate
statistical models (see Anderson [1958]) will fail when the number of variates is greater than
sample size, such as linear regression, LDA, PCA... And in many situations, the dimension
p will increase with the growth of sample size n.

Take the normal mean estimation as an example, Xi, i = 1, 2, ..., n are i.i.d samples from
multivariate normal distribution N(µ, σ2Ip), and sample mean X̄ is the minimax estimator
of µ. Note that the minimax error is

E
(
X̄ − µ

)2
=

p∑
j=1

E
(
X̄j − µj

)2
=

pσ2

n
,

and obviously X̄ is not a consistent estimator when n = o(p), which is called the curse of
dimensionality.

Another example is LDA, we need to compute the linear discriminant vector Σ̂
(
X̄ − Ȳ

)
.

The rank of sample covariance matrix is min{n, p} = n, which means Σ̂ is non-invertible.
So we can’t obtain Σ̂

−1
directly.

1 Gaussian sequence model
A toy model in high-dimensional statistics is the Gaussian sequence model,

yij = βj + zij, i = 1, 2, ..., n; j = 1, 2, ..., p (1.1)

where zij are i.i.d normal r.v with mean 0 and variance σ2 for each j. Now we have n
observations for each yj to estimate β = (β1, ..., βp). To overcome this problem, we need to
add some assumptions on high-dimensional parameter β. A direct thought is sparsity, i.e.,
there are only few non-zero elements in β. And this assumption can be written as

p∑
j=1

1(|βj| ̸= 0) ≤ s0. (1.2)
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Next step is to find the positions of non-zero parameter entries and obtain their estimation,
and the first part of our goal is also called support recovery. If βj = 0, then β̂j = Ȳj will
be quite small. Thus we can only keep β̂j with large magnitude, which leads to the idea of
thresholding.

There are many thresholding functions like hard thresholding, soft thresholding (see
Donoho and Johnstone [1994]), SCAD (see Fan and Li [2001]) etc. Here we use hard thresh-
olding method

β̂j = ȲjI
(∣∣Ȳj

∣∣ ≥ t
)
, ∀j ∈ {1, . . . , p}, (1.3)

where Ȳj =
∑n

i=1 yij/n. Next we will give some theoretical results on estimation error and
support recovery. Before this we need a lemma on the bound of maxj

∣∣Ȳj − βj

∣∣
Lemma 1.1 For the sample mean Ȳj, j = 1, 2, ..., p

p
max
i=1

∣∣Ȳj − βj

∣∣ = Op

(√
log p

n

)
. (1.4)

Proof: let Xj = Ȳj − βj =
∑n

i=1 zji
n

, where zji ∼ N(0, σ2) and independent. Using the tail
probability of normal random variables and the fact Xj ∼ N(0, σ

2

n
), we have

P
(

p
max
j=1

|Xj| ≥ t

)
≤

p∑
j=1

P (|Xj| ≥ t)

≤ 2p exp

(
−nt2

2σ2

)
.

Set t = λ
√

log p
n

for sufficiently large λ and the result follows.

Theorem 1.2 (Support recovery) Let S(β) = {j : |βj| ̸= 0} and S(β̂) = {j : |β̂j| ̸= 0},
assume that minj∈S |βj| > σ

√
2 log(2p/δ)

n
and set t = σ

√
2 log(2p/δ)

n
then with probability at least

1− δ,
S(β) = S(β̂). (1.5)

Proof: According to the proof of Lemma 1.1, with probability at least 1− δ,

p
max
i=1

∣∣Ȳj − βj

∣∣ ≤ σ

√
2 log(2p/δ)

n
.

If j ∈ S, then |β̂j| > 0, otherwise the error will be great than σ
√

2 log(2p/δ)
n

. If j ∈ Sc, then

P
(
|β̂j| = 0

)
= P

(∣∣Ȳj − βj

∣∣ ≥ t
)
≤ 1− δ.

Then we have completed the proof.
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Theorem 1.3 (ℓ1 error bound) Under the assumption (1.2) and set threshold t = λ
√

log p
n

∥β̂ − β∥1 =
p∑

j=1

|β̂j − βj| = Op

(
s0

√
log p

n

)
, (1.6)

where λ >
√
2σ.

Proof: First using the assumption (1.2) and Lemma 1.1, we have

∥∥∥β̂ − β
∥∥∥
1
=

p∑
j=1

∣∣ȲjI
(∣∣Ȳj

∣∣ ≥ t
)
− βj

∣∣
=
∑
j∈S

∣∣ȲjI
(∣∣Ȳj

∣∣ ≥ t
)
− βj

∣∣+∑
j∈Sc

∣∣ȲjI
(∣∣Ȳj

∣∣ ≥ t
)∣∣

≤
∑
j∈S

∣∣Ȳj − βj

∣∣+∑
j∈S

∣∣Ȳj

∣∣ I (∣∣Ȳj

∣∣ < t
)
+
∑
j∈Sc

∣∣ȲjI
(∣∣Ȳj

∣∣ ≥ t
)∣∣

≤ s0
p

max
i=1

∣∣Ȳj − βj

∣∣+ s0t+
p

max
i=1

∣∣Ȳj − βj

∣∣∑
j∈Sc

I
(∣∣Ȳj

∣∣ ≥ t
)

= Op

(
s0

√
log p

n

)
+ I.

Then note that when βj = 0, Ȳj ∼ N(0, σ
2

n
) and

P

(∑
j∈Sc

I
(∣∣Ȳj

∣∣ ≥ t
)
> 0

)
= P

(
max
j∈Sc

|Ȳj| ≥ t

)
≤ 2p exp

(
− λ2

2σ2
log p

)
= 2 exp

(
− λ2

2σ2
log p+ log p

)
→ 0.

Thus I = op

(
s0

√
log p
n

)
and the result follows.

Remark. Through the analysis above, under the sparsity assumption (1.2), if s0
√

log p
n

→ 0

then hard thresholding estimator is still consistent.

Theorem 1.4 (ℓ∞ error bound) Under the assumption (1.2) and set threshold t = M0

√
log p
n

for some M0 > 0, then we have

∥β̂ − β∥∞ = Op

(√
log p

n

)
. (1.7)
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Proof: Note that there exists some C0 such that,

∥β̂ − β∥∞ ≤ p
max
j=1

∣∣Ȳj − βj

∣∣+ p
max
j=1

∣∣Ȳj

∣∣ I (|Ȳj| < t
)

≤ C0

√
log p

n
+ t.

Remark. Using the simple norm inequality and Theorem 1.2, we have ℓ2 error bound

∥β̂ − β∥2 ≤
√
s∥β̂ − β∥∞ = Op

(√
s log p

n

)
. (1.8)

And according to Johnstone [1986], (1.8) is statistical minimax lower bound of sparse mean
estimation.

2 New tail bound assumption
Note that the assumption of normality is used to construct tail bound (1.4), and this as-
sumption can be substituted by the following condition:

Assumption 2.1 (Exponential-type tails) Suppose that there exists some γ > 0 such
that

E exp
(
tz2ij
)
≤ K1 < ∞ for all |t| ≤ γ and i, j (2.1)

Here we use a lemma in Cai and Liu [2011] as following:

Lemma 2.2 Let ξ1, . . . , ξn be independent random variables with mean 0. Suppose that there
exists some η > 0 and B̄2

n such that
∑n

k=1 Eξ
2
ke

η|ξk| ≤ B̄2
n. Then for 0 < x ≤ B̄n,

P

(
n∑

k=1

ξk ≥ CηB̄nx

)
≤ exp

(
−x2

)
, (2.2)

where Cη = η + η−1.

Proof: By the inequality |es − 1− s| ≤ s2e|s|, we have for any t ≥ 0,

P

(
n∑

k=1

ξk ≥ CnB̄nx

)
≤ exp

(
−tCηB̄nx

) n∏
k=1

E exp (tξk)

≤ exp
(
−tCηB̄nx

) n∏
k=1

(
1 + t2Eξ2ke

t|ξk|
)

≤ exp

(
−tCηB̄nx+

n∑
k=1

t2Eξ2ke
t|ξk|

)
.
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Take t = η
(
x/B̄n

)
, it follows that

P

(
n∑

k=1

ξk ≥ CηB̄nx

)
≤ exp

(
−ηCηx

2 + η2x2
)
= exp

(
−x2

)
.

Theorem 2.3 Assume that the noise zij satisfying Assumption 2.1, we have

p
max
i=1

∣∣Ȳj − βj

∣∣ = Op

(√
log p

n

)
. (2.3)

Proof: Using the simple inequality

s2es ≤ e2s ≤ es
2+1,

we have for each i, j

E
(
z2ije

η|zij |
)
≤ E

(
η−2 exp(2η|zij|)

)
≤ eE

(
η−2 exp(η2|zij|2)

)
.

By Assumption 2.1, we can set
B̄2

n = neη−2K1,

where 0 < η <
√
γ. Then for sufficiently large η

P

(
p

max
i=1

∣∣Ȳj − βj

∣∣ > C

√
log p

n

)
≤

p∑
j=1

P

(
n∑

i=1

|zij| > C
√
n log p

)

= pP

(
n∑

i=1

|zij| > CB̄ne
−1ηK

− 1
2

1

√
log p

)
→ 0,

whcih completes the proof.
Remark. Assumption 2.1 is very similar to sub-Gaussian (see Vershynin [2018]), which has
tail

P{|X| ≥ t} ≤ 2 exp
(
−t2/K2

1

)
for all t ≥ 0. (2.4)

And there is concentration inequality about sum of independent sub-Gaussian random vari-
ables.

Theorem 2.4 (General Hoeffding’s inequality) Let Xi, i = 1, 2, ..., N be be indepen-
dent, mean zero, sub-gaussian random variables with parameter σi, then for every t ≥ 0,

P

{∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ ≥ t

}
≤ 2 exp

(
− ct2∑N

i=1 σ
2
i

)
. (2.5)

Besides Exponential-type tails, there is another common tail called Polynomial-type tails.
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Assumption 2.5 (Polynomial-type tails) Suppose that for some γ > 0,

E |zij|2(1+γ) ≤ K for all i, j. (2.6)

Theorem 2.6 Under the Assumption (2.5), we have

p
max
i=1

∣∣Ȳj − βj

∣∣ = Op

(
p1/2(1+γ)

n1/2

)
. (2.7)

Proof: We use a moment inequality in Shao [2003], for q > 0

E

∣∣∣∣∣
n∑

i=1

zij

∣∣∣∣∣
q

≤ Cq

n1−q/2

n∑
i=1

E |Xi|q . (2.8)

By Markov inequality,

P
(

p
max
i=1

∣∣Ȳj − βj

∣∣ > t
)
≤ p

E |
∑n

i=1 zij|
2(1+γ)

(nt)2(1+γ)

≤ p
Cn1+γK2

(nt)2(1+γ)

= pCpK2n
−(1+γ)t−2(1+γ).

Let t = M p1/2(1+γ)

n1/2 for sufficiently large M , then we complete the proof.
Remark. If we take threshold t = M p1/2(1+γ)

n1/2 , then the convergence rate of ℓ1 error will be
Op(s0

p1/2(1+γ)

n1/2 ).

3 New sparsity assumption
Sparsity assumption (1.2) is actually an ℓ0 ball in Rp, which can be genlized to ℓq ball in Rp,
i.e., for 0 ≤ q < 1

U (q, sq) =

{
β ∈ Rp :

p∑
j=1

|βj|q ≤ sq

}
. (3.1)

Next we will build convergence rate of ℓq, and the proof is very similar to the Theorem 1 in
Bickel and Levina [2008].

Theorem 3.1 (ℓ1 error bound) If β ∈ U (q, sq) and set threshold tn = M
√

log p
n

for suf-
ficiently large M . Suppose thta noise zij are sub-Gaussian random variables with same
parameter σ, then

∥∥∥β̂ − β
∥∥∥
1
=

p∑
j=1

|β̂j − βj| = Op

(
sq

(
log p

n

)(1−q)/2
)
. (3.2)
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Proof: Let Ttn be hard thresholding function with threshold tn, then note that∥∥∥β̂ − β
∥∥∥
1
≤
∥∥Ttn

(
Ȳ
)
− Ttn (β)

∥∥
1
+ ∥β − Ttn (β)∥1 . (3.3)

By β ∈ U (q, sq) we have

∥β − Ttn (β)∥1 =
p∑

j=1

|βj − βjI (|βj| ≥ tn)|

=

p∑
j=1

|βj| I (|βj| < tn)

≤
p∑

j=1

|βj|q t1−q
n I (|βj| < tn)

≤ sqt
1−q
n .

Next we will bound the first term of (3.3),

∥∥Ttn

(
Ȳ
)
− Ttn (β)

∥∥
1
≤

p∑
j=1

∣∣Ȳj

∣∣ I (|Ȳj| ≥ tn, |βj| < tn
)

+

p∑
j=1

∣∣Ȳj − βj

∣∣ I (|Ȳj| ≥ tn, |βj| ≥ tn
)

+

p∑
j=1

|βj| I
(
|Ȳj| < tn, |βj| ≥ tn

)
= I + II + III.

For the second term, there exists some C1 > 0 such that,

II ≤
p∑

j=1

∣∣Ȳj − βj

∣∣ I ( |βj| ≥ tn)

≤ p
max
j=1

∣∣Ȳj − βj

∣∣ p∑
j=1

I ( |βj| ≥ tn)

≤ C1

√
log p

n
sqt

−q
n .

For the third term,

II ≤
p∑

j=1

∣∣βj − Ȳj

∣∣ I (|βj| ≥ tn) + tn

p∑
j=1

I (|βj| ≥ tn)

≤ C1

√
log p

n
sqt

−q
n + sqt

1−q
n .
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For the first term,

I ≤
p∑

j=1

∣∣Ȳj − βj

∣∣ I (|Ȳj| ≥ tn, |βj| < tn
)
+

p∑
j=1

|βj| I
(
|Ȳj| ≥ tn, |βj| < tn

)
≤

p∑
j=1

∣∣Ȳj − βj

∣∣ I (|Ȳj| ≥ tn, |βj| < tn
)
+ sqt

1−q
n

= IV + sqt
1−q
n .

Now take γ ∈ (0, 1),

IV =

p∑
j=1

∣∣Ȳj − βj

∣∣ I (|Ȳj| ≥ tn, |βj| < γtn
)
+

p∑
j=1

∣∣Ȳj − βj

∣∣ I (|Ȳj| ≥ tn, γtn ≤ |βj| ≤ tn
)

≤
p∑

j=1

∣∣Ȳj − βj

∣∣ I (|Ȳj| ≥ tn, |βj| < γtn
)
+

p∑
j=1

∣∣Ȳj − βj

∣∣ I (|βj| ≥ γtn)

≤ C1

√
log p

n

p∑
j=1

I
(∣∣Ȳj − βj

∣∣ > (1− γ)tn
)
+ C1

√
log p

n
sq(γtn)

−q,

moreover using (2.4) and make (1− γ)2M > 2σ2 we have

P

(
p∑

j=1

I
(∣∣Ȳj − βj

∣∣ > (1− γ)tn
)
> 0

)
= P

(
p

max
j=1

|Ȳj − βj| > (1− γ)tn

)
≤ p exp

(
−(1− γ)2M log p

2σ2

)
= exp

(
log p− (1− γ)2M

2σ2
log p

)
→ 0.

Combining the inequalities above, (3.2) is proved.
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